SAA CPI FORTRAN Reference
Book Cover

COVER Book Cover

Systens Application Architecture

Common Progranmm ng Interface
FORTRAN Ref erence

Docunment Nunber SC26-4357-02

Fil e Number S370-40

| Copyright IBM Corp. 1987, 1990
COVER -1

TITLE Titl e Page

SAA CPI FORTRAN Reference
Title Page

Systems Application Architecture
Common Programm ng I nterface
FORTRAN Reference

Document Nunber SC26-4357-02

| Copyright IBM Corp. 1987, 1990
TITLE-1

SAA CPI FORTRAN Reference
Edition Notice
EDI TION Edition Notice
Third Edition (Septenber 1990)

This edition replaces and makes obsol ete the previous edition,
SC26- 4357- 1.

This edition applies to IBMs Systenms Application Architecture FORTRAN
and to the follow ng:

VS FORTRAN Version 2 Rel ease 4, Program Nunber 5668-806
| BM FORTRAN 400, Program Nunber 5730-FT1
| BM FORTRAN/ 2, Program Nunber 6280185

and to all subsequent rel eases and nodifications until otherw se
indicated in new editions. Consult the latest edition of the
applicable | BM system bi bli ography for current product information.

Speci fic changes are indicated by a vertical bar to the left of the
change. Editorial changes that have no technical significance are not
noted. For a detailed Iist of changes, see "Summary of Changes" in
topi ¢ CHANGES.

Order publications through your IBMrepresentative or the |BM branch
office serving your locality. Publications are not stocked at the
address given bel ow.

A form for reader's coments appears at the back of this publication.
If the form has been renoved, address your comments to: |BM

Cor poration, Programm ng Publishing, P.O Box 49023, San Jose,
California, U S. A 95161-9023.

When you send information to IBM you grant |BM a non-exclusive right
to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

i Copyright International Business Machines Corporation 1987, 1990.

Al rights reserved.

Note to U.S. Government Users -- Docunmentation related to restricted
rights -- Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedul e Contract with |BM Corp.

| Copyright IBM Corp. 1987, 1990
EDITION - 1

SAA CPI FORTRAN Reference
Special Notices
PREFACE Speci al Notices
References in this publication to | BM products, prograns or services do
not inply that IBMintends to nake these available in all countries in
whi ch | BM oper at es.

Any reference to an IBMIlicensed program or other |BM product in this
publication is not intended to state or inply that only IBM s program or

ot her product may be used. Any functionally equival ent program which does
not infringe any of IBMs intellectual property rights may be used instead
of the IBM product. Evaluation and verification of operation in
conjunction with other products, except those expressly designated by | BM
is the user's responsibility.

| BM may have patents or pending patent applications covering the subject
matter in this docunment. The furnishing of this docunent does not give
you any license to these patents. You can send license inquiries, in
writing, to the IBM Director of Commercial Relations, |BM Corporation,
Purchase, NY 10577.

The followi ng ternms, denoted by an asterisk (*) on their first occurrences
in this publication, are trademarks of the |BM Corporation in the United
St ates and/or other countries:

AD/ Cycl e 0os/ 2

FORTRAN/ 2 GOs/ 400

FORTRAN 400 RPG

| BM SAA

WS Systens Application Architecture
Operating System 2 VM

Operating System 400

| Copyright IBM Corp. 1987, 1990
PREFACE - 1

CONTENTS Tabl e of

COVEF
TI TLE

EDI TI ON
PREFACE
CONTENTS
.0

A DA DA DBAEDMDIEDDDIEDDIEDDIDNOMWWWWWWWWWWWWWNDNNDMNDNDNMNMMNNNPRPRPPRPPRPPRPPEPPRPEPRPEREREREPR

© 0O ~N OO O WNEFEP ONOOOOPRA WNDNEREPONOOG O OO OO0 MWW wWwwWwNDDNDDNPRE

B
= o

0O A W NNNDNDNNDNDDNERE O

o0 WN P

N NN N B

SAA CPI FORTRAN Reference
Table of Contents

Contents

Book Cover

Titl e Page

Editi on Notice

Speci al Notices

Tabl e of Contents
Chapter 1. Introduction

Who Shoul d Read This Book
What the SAA Solution Is
Supported Environnents
Common Progranm ng Interface
How to Use This Book
Rel ati onship to Products
How Product | nplenmentations Are Designated
How to Read the Syntax Di agrans
A Note about Exanples
Rel at ed Docunent ati on
For the SAA Sol ution
For | mpl enenting Products
VS FORTRAN Version 2 Publications
FORTRAN/ 400 Publications
FORTRAN/ 2 Publications
I ndustry Standards
Interface Definition Table

Chapter 2. Characters, Nanes, Lines, Statenents,

Characters
Nanes
Scope of a Nane
Li nes
St at enent s
St at enent Label s
Order of Statenents and Comment Lines

and Execution Sequence

Nor mal Execution Sequence and Transfer of Control

Chapter 3. Data Types and Constants

The Data Types

How Type |s Determ ned

| NTEGER*2 Type

| NTEGER*4 Type

REAL*4 Type
Forns of a Real Constant

REAL*8 (Doubl e Precision) Type
Forms of a Double Precision Constant

COWMPLEX*8 Type

COVPLEX*16 Type

LOGI CAL*1 Type

LOG CAL*4 Type

CHARACTER Type

Vari abl es
Arrays
Array Decl arators
Kinds of Array Declarators and Arrays
Di mensi ons of an Array
Size of an Array
Array El enents
Arrangement of Arrays in Storage
Character Substrings
Definition Status
Ref erence
Associ ation

| Copyright IBM Corp. 1987, 1990
CONTENTS -1

Chapter 4. Variables, Arrays, and Character Substrings

COOOOOOOOOOOOOVOOOOOPIIPIDNDDODOPPPPOPOPOONT N TG TGO GG GGG

=
p h

-
©

-
©

-
©

=
°©

=
°©

=
°©

© 0N NSNSNSNSNSNANOOOOOPMWDNMNPEPOPRAWNRPOOWOOOWNO ORMWWWWWWNEPRPOMMDMAENDPEWWWNNDNDREPRPEPO

a b WN PP

~N o b WN

W N P

SAA CPI FORTRAN Reference
Table of Contents
Chapter 5. Expressions
Arithnetic Expressions
Arithnetic Constant Expressions
Data Type of an Arithnetic Expression
Character Expressions
Character Constant Expressions
Rel ati onal Expressions
Arithnetic Rel ational Expressions
Character Rel ati onal Expressions
Logi cal Expressions
Val ue of a Logical Expression
Logi cal Constant Expressions
Precedence of Operators
Chapter 6. Specification Statenments
DI MENSI ON St at ement
EQUI VALENCE St at enent
COMVON St at ement
Common Associ ation
Common Bl ock Storage Sequence
Size of a Common Bl ock
Di fferences between Named Common Bl ocks and Bl ank Common Bl ocks
Restriction on Common and Equi val ence
| NTEGER, REAL, DOUBLE PRECI SI ON, COMPLEX, LOG CAL, and CHARACTER Type Statenents
I MPLICI T Statenment
PARAMETER St at ement
EXTERNAL St at ement
I NTRI NSI C St at enent
SAVE St at ement
Chapter 7. DATA Statement
Chapter 8. Assignment Statements
Arithmetic Assignment Statement
Logi cal Assignment Statenment
St atement Label Assignment (ASSIGN) Statenent
Character Assignment Statenent
Chapter 9. Control Statenents
Uncondi ti onal GO TO St at enent
Comput ed GO TO St at enment
Assi gned GO TO St at enent
Arithmetic | F Statenent
Logi cal I|F Statenent
I F Construct--Block IF, ELSE |F, ELSE, and END I F Statenents
DO St at enent
Range of a DO Loop
Active and Inactive DO Loops
Execution of a DO Statenent
Loop Control Processing
Execution of the Range
Term nal Statenment Execution
I ncrementation Processing
CONTI NUE St at ement
STOP St at ement
PAUSE St at ement
END St at enent
Chapter 10. Program Units and Procedures
Rel ati onshi ps anong Program Units and Procedures
PROGRAM St at enent - - Mai n Program
Functions
Functi on Reference
St at ement Function Statenent
FUNCTI ON St at ement - - Functi on Subprogram (External Function)

| Copyright IBM Corp. 1987, 1990
CONTENTS -2

SAA CPI FORTRAN Reference
Table of Contents

10. 4 SUBROUTI NE St at ement

10.5 CALL St atenent

10. 6 ENTRY St at ement

10. 7 RETURN St at enent

10. 8 Argunent s

10.8.1 Associ ation of Argunents

10.8.2 Length of Character Argunments

10.8.3 Vari abl es As Dummy Argunents

10.8. 4 Arrays As Dunmy Argunents

10.8.5 Procedures As Dumry Argunents

10.8.6 Asterisks As Dummy Argunents

10.9 BLOCK DATA St at ement --Bl ock Data Subprogram

11.0 Chapter 11. |Input/Qutput Statenents

11.1 Records

11.1.1 Formatted Records

11.1.2 Unf ormatt ed Records

11.1.3 Endfil e Records

11.2 Files

11.2.1 External Files

11. 2. External File Access--Sequential or Direct
11.2.3 Internal Files

11.3 Units

11.3.1 Connection of a Unit

11. 4 READ, WRI TE, and PRI NT Statements

11.4.1 Cat egori es of READ, WRITE, and PRI NT Statenents
11.4.2 Execution of READ, WRITE, and PRI NT Statenents
11. 4.3 File Position before and after Data Transfer
11. 4.4 Inplied-DO List in a READ, WRI TE, or PRI NT Statenent
11.4.5 Exanpl es of READ, WRI TE, and PRI NT Statenents
11.5 OPEN St at enment

11.6 CLOSE St at enment

11.7 I NQUI RE St at enmrent

11.8 BACKSPACE, ENDFI LE, and REW ND St at enents

12.0 Chapter 12. Input/Qutput Formatting

12.1 Format-Di rected Formatting

12.1.1 For mat Specification

12. 1. FORMAT St at ement

12.1.3 Character Format Specification

12.2 Interaction between an | nput/Qutput List and a Format Specification
12.3 Edi ting

12. 3.1 / (Slash) Editing

12.3.2 (Col on) Editing

12.3.3 A (Character) Editing

12.3.4 Apostrophe Editing

12.3.5 BN (Bl ank Null) and BZ (Bl ank Zero) Editing
12.3.6 E (Real with Exponent) and D (Double Precision) Editing
12.3.7 F (Real without Exponent) Editing

12.3.8 G (Ceneral) Editing

12.3.9 H Editing

12.3.10 I (Integer) Editing

12.3.11 L (Logical) Editing

12.3.12 P (Scal e Factor) Editing

12.3.13 S, SP, and SS (Sign Control) Editing

12.3.14 T, TL, TR, and X (Positional) Editing

12.3.15 Z (Hexadecimal) Editing

12. 4 List-Directed Formatting

12.4.1 List-Directed I nput

12.4.2 List-Directed Qutput

13.0 Chapter 13. | NCLUDE Conpiler Directive

A. 0 Appendi x A. Intrinsic Functions

| Copyright IBM Corp. 1987, 1990
CONTENTS - 3

SAA CPI FORTRAN Reference
Table of Contents

B. 0 Appendi x B. Conpil er Considerations
CHANGES Summary of Changes
| NDEX I ndex

| Copyright IBM Corp. 1987, 1990
CONTENTS - 4

SAA CPI FORTRAN Reference
Chapter 1. Introduction

1.0 Chapter 1. |Introduction
This introductory section:

O Identifies the book's purpose and audi enc
O G ves a brief overview of the Systens Application Architecture* (SAA*
sol ution

O Expl ai ns how to use the book

Subt opi cs

.1 Who Shoul d Read This Book
What the SAA Solution Is
How to Use This Book

A Not e about Exanples

Rel at ed Docunent ati on

I ndustry Standards
Interface Definition Table

B R R R R PP
N o 0N WwN

| Copyright IBM Corp. 1987, 1990
10-1

SAA CPI FORTRAN Reference
Who Should Read This Book

1.1 Who Shoul d Read This Book

This book defines the SAA FORTRAN interface. It is intended for
programmers who want to wite applications that adhere to this definition.

This book is a reference rather than a tutorial. |t assumes you are
already fam liar with FORTRAN progranm ng concepts.

| Copyright IBM Corp. 1987, 1990
11-1

SAA CPI FORTRAN Reference
What the SAA Solution Is

1.2 What the SAA Solution Is

The SAA solution is based on a set of software interfaces, conventions and
protocols that provide a framework for designing and devel opi ng
applications.

The SAA sol ution:

O Defines a common progranm ng interface that you can use to devel o
applications that can be integrated with each other, and transported
to run in multiple SAA environnents

O Defines common conmuni cations support that you can use to connec
applications, systems, networks, and devices

O Defines a common user access that you can use to achieve consistenc
in panel | ayout and user interaction techniques

O Of fers some applications and application devel opnent tools witten b
| BMF.

Subt opi cs
1.2.1 Supported Environments
1.2.2 Conmon Programing Interface

| Copyright IBM Corp. 1987, 1990
12-1

SAA CPI FORTRAN Reference
Supported Environments

1.2.1 Supported Environnents

Several comnbinations of |BM hardware and software have been selected as
SAA environments. These are environnents in which IBMw |l nanage the
availability of support for applicable SAA el ements, and the conformance
of those elenents to SAA specifications. The SAA environnments are the
fol |l owi ng:

O WS
- TSO E
- CI Cs
- I MS

O VM / CM

O Operating System 400* (OS/400*

O Operating System 2* (OS/2*

| Copyright IBM Corp. 1987, 1990
121-1

SAA CPI FORTRAN Reference
Common Programming Interface

1.2.2 Common Progranm ng Interface

As its nanme inplies, the common programm ng interface (CPl) provides

| anguages, conmmands, and calls that progranmers can use to devel op
applications which take advantage of SAA consistency. These applications
can be easily integrated and transported across the supported

envi ronnents.

The conponents of the interface currently fall into two general
cat egori es:

g Language

Application Generator
C

COBOL

FORTRAN

PL/ |

Procedures Language
RPG*

O Service

Communi cations Interface
Dat abase I nterface

Di al og I nterface
Presentation Interface
Query Interface
Repository Interface.

The CPI is defined by this and the other CPl reference books. The CPl is
not in itself a product or a piece of code. But--as a definition--it does
establish and control how I BM products are being inplenented, and it
establi shes a common base across the applicable SAA environnments.

Thus, when you want to create an application that can be used in nmore than
one environment, you can stay within the boundaries of the CPlI and obtain
easier portability. (Naturally, the design of such applications should be
done with portability in mnd as well.)

A list of SAA books to help you can be found under "Rel ated Documentation”
in topic 1.5 and on the back cover of this book.

| Copyright IBM Corp. 1987, 1990
122-1

SAA CPI FORTRAN Reference
How to Use This Book

1.3 How to Use This Book

Subt opi cs

1.3.1 Rel ationship to Products

1.3.2 How Product |nplenmentations Are Designated
1.3.3 How to Read the Syntax Diagrans

| Copyright IBM Corp. 1987, 1990
13-1

SAA CPI FORTRAN Reference
Relationship to Products

1.3.1 Relationship to Products

The SAA FORTRAN interface defines the elenments that are consistent across
the applicable SAA environments. Preparing and running prograns requires
the use of a FORTRAN product that inplements the interface on one of these
systens.

For the FORTRAN interface, these products are:

O VS FORTRAN Version 2 Rel ease 4 (5668-806) on MVS and V
O | BM FORTRAN/ 400* (5730-FT1) on Operating System 40
ad | BM FORTRAN/ 2* (6280185) on Operating System

These products have their own books, and you will need to use those books
in addition to this one. This book defines the interface elements that
are conmon across the environnents. The product books describe any
additional elenents, and--nore inportantly--explain howto prepare and run
a programin that particular environnent.

See "Rel ated Documentation" in topic 1.5 for a list of those books.

| Copyright IBM Corp. 1987, 1990
131-1

SAA CPI FORTRAN Reference
How Product Implementations Are Designated

1.3.2 How Product |nplenentations Are Designated

Because the SAA solution is still evolving, conplete and consistent
products may not be available yet on all the applicable systens. Sone
interface el ements may not be inplemented everywhere. O hers may be

i mpl emented, but differ slightly in their syntax or semantics (how they
are coded or how they behave at run tine).

These conditions are identified in this book in two ways:

O A system checklist precedes each interface elenent. |If the interfac
el ement is inplemented or announced on a particular system that
colum is marked with an X. If it is not, that colum is blank.

For the SAA FORTRAN interface, all of the interface elenments are
i mpl emented or announced for the four applicable systens:

L e +
' WS | VvV | 0S/400 | oS/ 2 |
[R, [L e Fommmea s 1
i X X X X
L T I +

ad The FORTRAN interface definition is printed in black ink. If th
inpl ementation of an interface elenent in an operating environnment
differs fromthe SAA definition in its syntax or semantics, text is
printed in green--as is this sentence.

| Copyright IBM Corp. 1987, 1990
132-1

SAA CPI FORTRAN Reference
How to Read the Syntax Diagrams

1.3.3 How to Read the Syntax Diagrans

Throughout this book, syntax is described using the structure defined
bel ow.

O Read the syntax diagrams fromleft to right, fromtop to bottom
following the path of the line.

The --- symbol indicates the beginning of a statenment.

The --- synbol indicates that the statenment syntax is continued on
the next |ine.

The --- synbol indicates that a statement is continued fromthe

previous |ine.
The --- 0O symbol indicates the end of a statenent.

Di agranms of syntactical units other than conplete statements start

with the --- synmbol and end with the --- synbol.
O Required itenms appear on the horizontal line (the main path)
---STATEMENT------- required_item----------- oo

O Optional itens appear below the main path

2o s STATEMENT - - - - - - - o mm oo oo o e oo
+-optional _item +

O If you can choose fromtwo or nore items, they appear vertically, in
st ack.

If you must choose one of the itens, one item of the stack appears on
the main path.

--- STATEMENT- - - - - - required_choicel--------mmmmmm o
+--required_choice2--+
I f choosing one of the itens is optional, the entire stack appears
bel ow the main path.
B I B = =) e e

+--optional _choicel--|
+--optional _choice2--+

O An arrow returning to the left above the main line indicates an ite
that can be repeated.

- -- STATEMENT- - - - - repeatable_item --------mmmmm

A repeat arrow above a stack indicates that you can repeat the itens

| Copyright IBM Corp. 1987, 1990
133-1

SAA CPI FORTRAN Reference

How to Read the Syntax Diagrams
in the stack. Where a comma is included in the repeat synbol, it mnust
be used between repeated itens.

O Keywor ds appear in uppercase (for exanple, EQUI VALENCE). They nust be
spel l ed exactly as shown.

O Lowercase letters (for exanple array_el ement _nane) represent
user-supplied names or values. |If one of these terms ends in _list,
it specifies a list of the terns, where a list is a nonenpty sequence
of the terns separated by comms. For exanple, the term nane_li st
specifies a list of the termnane.

O I f parentheses are shown, you nust enter them as part of the syntax

O Itenms within brackets ([]) are optional. An ellipsis (...) follown
an itemindicates that the item may be repeated.

The followi ng exanple of a fictitious statement illustrates how the syntax

is used:
o
|

| -, -4

i O i

' - - EXAMPLE- -char _constant----a----------------- e----- name_list-------- O

! +-b-+ +-Cc----- !

! +-(-d-)-+

|

I

e mmmmm =

In the fictitious statement EXAMPLE you woul d:

O Use the keyword EXAMPLE.

O Substitute a value for char_constant.

ad Substitute a value for a or b, but not both.

O Substitute a value for ¢, a value for d, or no value. |f you
substitute a value for d, you nust include the parentheses.

O Substitute at |east one value for e. |If you substitute nore than one
val ue, you nust put a comma between each.

O Substitute the value of at |east one name for nanme_list.

| Copyright IBM Corp. 1987, 1990
133-2

SAA CPI FORTRAN Reference
A Note about Examples

1.4 A Note about Exanples

Exanples in this book help explain elenents of the SAA FORTRAN | anguage.
For this purpose they are coded in a sinple style. They do not attenpt to
conserve storage, check for errors, achieve fast execution, or denpnstrate
all possible uses of a |anguage el ement.

| Copyright IBM Corp. 1987, 1990
14-1

SAA CPI FORTRAN Reference
Related Documentation

1.5 Rel ated Docunentation

Subt opi cs
1.5.1 For the SAA Solution
1.5.2 For Inplenenting Products

| Copyright IBM Corp. 1987, 1990
15-1

SAA CPI FORTRAN Reference
For the SAA Solution

1.5.1 For the SAA Sol ution

An introduction to the SAA solution in general can be found in SAA: An
Overvi ew, GC26-4341.

An introduction to the comopn programm ng interface can be found in Common
Programm ng Interface: Summary, GC26-4675.

More detailed informati on on the conponents of the conmon progranm ng
interface is available in the follow ng SAA manuals (including this one):

Application Generator Reference, SC26-4355
C Reference--Level 2, SC09-1308

COBOL Reference, SC26-4354

Communi cati ons Reference, SC26-4399

Dat abase Reference, SC26-4348

Di al og Reference, SC26-4356

FORTRAN Ref erence, SC26-4357

PL/1 Reference, SC26-4381

Presentati on Reference, SC26-4359
Procedures Language Reference, SC26-4358
Procedures Language Level 2 Reference, SC24-5549
Query Reference, SC26-4349

Repository Reference, SC26-4684

RPG Ref erence, SC09-1286.

General progranmm ng advice may be found in Witing Applications: A Design
Gui de, SC26-4362. An introduction to the use of the AD/ Cycle* application
devel opment tools can be found in AD/ Cycle Concepts, GC26-4531.

A definition of the comopn user access can be found in Common User Access:
Advanced Interface Design Guide, SC26-4582, and Common User Access: Basic
Interface Design Guide, SC26-4583.

More information on the conmon conmuni cations support can be found in
Common Communi cati ons Support: Summary, GC31-6810.

Ordering Information: Contact your local |BM branch office for
informati on on how to order the above publications. They also can be
obtai ned through an authorized IBM dealer. The entire set of SAA
publications can be ordered by specifying the bill-of-forns nunber
SBOF- 1240.

| Copyright IBM Corp. 1987, 1990
151-1

SAA CPI FORTRAN Reference
For Implementing Products

1.5.2 For |nplenmenting Products

Subt opi cs

1.5.2.1 VS FORTRAN Version 2 Publications
1.5.2.2 FORTRAN 400 Publications

1.5.2.3 FORTRAN/ 2 Publi cations

| Copyright IBM Corp. 1987, 1990
152-1

SAA CPI FORTRAN Reference
VS FORTRAN Version 2 Publications

1.5.2.1 VS FORTRAN Version 2 Publications

VS FORTRAN Version 2 Language and Li brary Reference, SC26-4221
VS FORTRAN Version 2 Progranmm ng Gui de, SC26-4222

| Copyright IBM Corp. 1987, 1990
1521-1

SAA CPI FORTRAN Reference
FORTRAN/400 Publications

11.5.2.2 FORTRAN 400 Publications

| BM FORTRAN/ 400 Language Reference, SC21-9844
| BM FORTRAN/ 400 User's Cui de, SC21-9845

| Copyright IBM Corp. 1987, 1990
1522-1

SAA CPI FORTRAN Reference
FORTRAN/2 Publications

1.5.2.3 FORTRAN/ 2 Publications

| BM FORTRAN/ 2 Fundanent al s
| BM FORTRAN/ 2 Conpi |l e, Link, and Run
| BM FORTRAN/ 2 Language Reference

| Copyright IBM Corp. 1987, 1990
1523-1

SAA CPI FORTRAN Reference
Industry Standards

1.6 Industry Standards

Systens Application Architecture FORTRAN is designed according to the
speci fications of the follow ng industry standards as understood and
interpreted by I1BMas of Septenber, 1987:

O American National Standard Programm ng Language FORTRAN, ANS
X3.9-1978 (also known as 1977 ANS FORTRAN)

O International Organization for Standardization | SO 1539-198
Programm ng Languages- FORTRAN. This standard specifies the sane |evel
of FORTRAN as 1977 ANS FORTRAN. In this book, references to 1977 ANS
FORTRAN are references to both standards.

O Anerican National Standard Coded Character Set--7-bit Anerica
Standard Code for Information |Interchange, ANSI X3.4-1986 (al so known
as ASClI).

O American National Standard Binary Floating-Point Arithnetic, ANSI/IEE
754-1985, with the follow ng differences:

- Rounds to nearest node only.

- No roundi ng precision nmode.

- No trapping (signaling) NaNs (not a nunber).
- No user traps.

- Exception status flags are not supported.

The bit-manipulation intrinsic functions are based on those described in
I ndustrial Conputer System FORTRAN Procedures for Executive Functions,
Process | nput/Qutput, and Bit Manipul ati on, ANSI/| SA-S61. 1.

| Copyright IBM Corp. 1987, 1990
16-1

SAA CPI FORTRAN Reference
Interface Definition Table

1.7 Interface Definition Table

The table below lists the | anguage el ements currently in the FORTRAN
interface for Systems Application Architecture.

The table indicates that all systenms have an IBM licensed program
announced or avail able that inplenents the |anguage el ements.

On WS and VM the inplementing product is VS FORTRAN Version 2 Rel ease 4
(5668-806). On Operating Systenf 400, the inplementing product is |BM
FORTRAN/ 400 (5730-FT1). On Operating System 2, the inplenmenting product
is | BM FORTRAN 2 (6280185).

o e m e m e e m e mmmm o mm o m = =
| Table 1. Major Elements of the FORTRAN Interface

o e e e e e e e e e e e e e e m e e e e e e e e m e m =
| Interface El enent I WS | W | 0OS/400 Os/2
L [, [, Fomm e oo - B S,
i Al elements of 1977 ANS FORTRAN ! X | X ' X ' X

| i i i i

E T T S . S Fememe -
I | BM ext ensi ons: | H H H
T e eemmaa- R +oemee
| Case-insensitive source | X 1 X H X | X
L L Fommmm - Fommma - ommmme - Fommmm -
I 31-character nanes ! X ! X ! X ! X

R L L ommmm - ommma - ommmm e e Femmmmm -
I Underscore character (_) in nanes ! X ! X ! X | X

B . [T, Fomm e oo B S,
| I NTEGER*2 data type | X ! X ! X ' X
L [, [, Fomm e oo - B S,
i COWPLEX*16 data type H X H X ' X ' X
T T T S S Foemmma Fommman-
| LOG CAL*1 data type H X H X | X ' X

E T T S . S Fememe -
i Optional |ength specification for | X | X H X ' X

' | NTEGER, REAL, COMPLEX, ' ' ' '

' and LOG CAL ' ' ' '

R L L ommmm - ommma - ommmm e e Femmmmm -
i EQUI VALENCE al | ows associ ati on of ' X H X 1 X ' X

! character and noncharacter itens ! ! ! !

B . [T, Fomm e oo B S,
| Data initialization in type ' X ' X ' X ' X

| statenents ' H ' 1
T T T S S Foemmma Fommman-
i COMMON al | ows character and non- ' X ' X ' X ' X

' character items in sane bl ock ' H | |
T e eemmaa- R +oemee
i IMPLICIT NONE formof the IMPLICIT | X ' X H X | X

d st at ement i | 1 1
L L Fommmm - Fommma - ommmme - Fommmm -
| Z edit descriptor ' X ' X ' X ! X
e [, Fomm e o= Fomm e - o B S,
i I NCLUDE conpiler directive ' X ' X 1 X ' X

B . [T, Fomm e oo B S,
I CONJG, HFIX, and IMAG intrinsic ' X H X 1 X 1 X

' functions ' ' ' '
T T T S S Foemmma Fommman-
| Bit-manipulation intrinsic functions | X 1 X H X H X

E T T S . S Fememe -

| Copyright IBM Corp. 1987, 1990
1.7-1

SAA CPI FORTRAN Reference
Interface Definition Table

| Copyright IBM Corp. 1987, 1990
1.7-2

SAA CPI FORTRAN Reference
Chapter 2. Characters, Names, Lines, Statements, and Execution Sequence

2.0 Chapter 2. Characters, Nanes, Lines, Statenents, and Execution Sequence
Thi s chapter describes:

OO ooooaoo

Char act er

Narme

Li ne

St at emrent

St at enent | abel

Order of statements and coment |ine

Nor mal execution sequence and transfer of control

Subt opi cs

N DN NNDNDDN
~N o o wWN

1

Characters

Names

Li nes

St atenents

St at enent Label s

Order of Statements and Conment Lines

Nor mal Execution Sequence and Transfer of Control

| Copyright IBM Corp. 1987, 1990
20-1

SAA CPI FORTRAN Reference
Characters

2.1 Characters

The FORTRAN character set consists of letters, digits, and special
characters:

| Letters i Digits | Special Characters

Upper case Lower case
Letters Letters Characters Nanmes of Characters
Bl ank
= Equal s (equal sign)
+ Pl us (plus sign)
- M nus (m nus sign)
* Ast eri sk
/ Sl ash
(Left parenthesis
) Ri ght parent hesis
) Comma
. Deci mal point (period)
$ Currency symbol
' Apost rophe
: Col on
Under score

x ™ TS0 Q@ t o oo oW
- O T O oS
© 0N O o WN RO

S r X T TITEOTMMOO ® >

N<Xs<CcCc-Hw>IxoO TVOZ

N< X £ < c —* o0

An al phanunmeric character is a letter or a digit.

In statements, |owercase letters are equivalent to their uppercase
counterparts, except within:

O Character constant
O H and apostrophe edit descriptors

In statenments, blanks are significant only in:

O Char acter constant
O H and apostrophe edit descriptor
O The count of characters permtted in a statenent

You may use bl anks anywhere else within a programunit to nake it nore
readabl e.

The characters have an order known as a collating sequence, which is
system dependent. The collating sequence depends on the system s coded
character set: EBCDIC on WS, VM and OS/ 400, or ASCI| on OS/2.

On OS/2, the carriage return, the line feed, and the end-of-file
characters nmust not be used as part of a character constant, an H edit
descriptor, an apostrophe edit descriptor, or a comment.

| Copyright IBM Corp. 1987, 1990
21-1

SAA CPI FORTRAN Reference
Names
2.2 Nanes

A nane is a sequence of letters, digits, or underscores, the first of
whi ch nust be a letter. A nane identifies:

O A main program external function, subroutine, block data subprogram
or comon bl ock. The maxi mum | ength of these names is 7 characters.

O A variable, array, constant, argument, or statenent function. Th
maxi mum | ength of these names is 31 characters.

(I'n 1977 ANS FORTRAN, the maxi num | ength of any name is 6 characters.)

Exanpl es of Nanes:

XPos

shel |

MAXO

TWENTY_FI VE
Longer ThanSi x

Subt opi cs
2.2.1 Scope of a Nane

| Copyright IBM Corp. 1987, 1990
22-1

SAA CPI FORTRAN Reference
Scope of a Name

2.2.1 Scope of a Nane

Each name in a programunit has a scope. That scope is either global to
an executable programor local to a programunit, with the follow ng
exceptions:

O The name of a conmmon block in a programunit may al so be the name o
an array, a statement function, a dumry procedure, or a variable (but
not a variable name that is also an external function nane in a
function subprogram.

ad In a function subprogram at |east one function name (on the FUNCTIO
or ENTRY statenment) nust also be the nane of a variable in that
function subprogram

Nanmes wi th gl obal scope are the name of the mmin program the names of all
subprogranms, and the nanes of conmmon bl ocks. All of these names have the
scope of an executabl e program

Nanes with | ocal scope are:

O Names of variables, arrays, constants, statement functions, dunm
procedures, and intrinsic functions. These names have a scope of a
programunit. (A name that is a dummy argument is classified as a
vari able, array, or dummy procedure).

O Names of variables that appear as dummy argunments in a statenen
function statement. These nanes have a scope of that statenent.

O Nanes of variables that appear as the DO variable of an inplied-D
list in a DATA statement. These nanes have a scope of the inplied-DO
list.

| Copyright IBM Corp. 1987, 1990
221-1

SAA CPI FORTRAN Reference
Lines

2.3 Lines

Aline is a sequence of 72 characters. The character positions in a line
are called colums and are nunbered consecutively 1 through 72.

There are three kinds of lines:

O

O

A comment |ine does not affect the executable program and may be used
to provide docunentation. |t may have either of the follow ng forns:

- Cor * in colum 1 and, optionally, any characters pernmitted in a
character constant (see page 3.11) in colums 2 through 72.
- Bl anks in colums 1 through 72.

An initial lineis the first line of a statenent. It is any line that
is not a conmment line and that contains blanks or a statenment |abel in
colums 1 through 5 and a blank or zero in colum 6.

A continuation line is a line that continues a statenent beyond its
initial line. It contains blanks in colums 1 though 5, and any
character fromthe FORTRAN character set other than blank or zero in
colum 6. A statenent may have as many as 19 continuation lines. The
END statement is the only statement that nust not be continued.

| Copyright IBM Corp. 1987, 1990
23-1

SAA CPI FORTRAN Reference
Statements

2.4 Statements

Statements are used to form programunits. Each statenment is witten in
colums 7 through 72 of an initial line and as many as 19 continuation
lines. Thus, a statement has a maxi mum of 1320 characters (20 lines x 66
characters).

Each statement is classified as executabl e or nonexecut abl e.

| Table 2. Systems Application Architecture FORTRAN St atenents

St at ement Execut abl e or Nonexecut abl e

Group

Arithnetic assignment
Logi cal assi gnment

' | Assi gnment
|]
I 1
| Statement | abel assignnment |
| i
| 1
| 1

Execut abl e - specify actions

(ASSI GN)
Character assignment

DI MENSI ON i Specification
EQUI VALENCE |
COMVON '
Type: | NTEGER, REAL, i
]
1
1
1

Nonexecut abl e - specify the
characteristics and
arrangenent of data

]
1
I
I
]
!
! DOUBLE PRECI Sl ON, COMPLEX,
! LOGI CAL, CHARACTER
L IMPLICIT !
! PARAMETER !
! EXTERNAL !
! | NTRINSI C !
! SAVE !

Nonexecut abl e - specifies the
initial values of data

i Unconditional GO TO | Execut abl e - specify actions
i Computed GO TO d
I Assigned GO TO !
i Arithmetic IF '
| Logical IF '
i Block IF, ELSE |F, ELSE, END I F |
i DO |
i CONTI NUE '
| STOP H
I PAUSE '
i END |
i CALL H
I 1
| 1

RETURN

PROGRAM
FUNCTI ON
St at enent function

d | Program unit
| i
| |
| SUBROUTI NE H
| i
| 1
| 1

and procedure

i Nonexecutable - classify

| programunits, specify

| statenment functions, and

| specify entry points within
ENTRY !
BLOCK DATA !

subprogr ans

READ i I nput/out put Execut abl e - specify actions

| Copyright IBM Corp. 1987, 1990
24-1

OPEN
CLOSE

| NQUI RE
BACKSPACE
ENDFI LE
REW ND

SAA CPI FORTRAN Reference
Statements

Nonexecut abl e - contains
editing information

| Copyright IBM Corp. 1987, 1990
24-2

SAA CPI FORTRAN Reference
Statement Labels

2.5 Statenent Labels

A statenent | abel is one to five digits, one of which nust be nonzero. A

statement is |labeled by placing a statement |abel anywhere in colums 1
through 5 of its initial Iine.

The sanme | abel nmust not be given to nobre than one statement in a program

unit. Blanks and | eading zeros are not significant in distinguishing

bet ween statenent |abels. Any statenment nmay be | abel ed, but only

execut abl e statenents and FORMAT statenents may be referred to by the use
of statement |abels. The statement naking the reference and the statenent
being referenced nust be in the sanme program unit.

| Copyright IBM Corp. 1987, 1990
25-1

SAA CPI FORTRAN Reference
Order of Statements and Comment Lines

2.6 Oder of Statements and Conment Lines

The required order of statements and comment lines in a programunit is
shown in the diagrambelow. In the diagram
O St atenents and comment |ines above a horizontal |ine nust preced

those below the Iine. For exanple, PARAMETER statenments nust precede
DATA, statenent function, executable, and END statenments, and nust
foll ow PROGRAM FUNCTI ON, SUBROUTI NE, BLOCK DATA, and | MPLICIT NONE
statenents.

Vertical lines separate statements and conment |lines that may b
interspersed. For exanple, PARAMETER statements may be interspersed
with coment |lines and with FORMAT, ENTRY, | MPLICIT, and other

speci fication statenents.

Table 3. Order of Statements and Comrent Lines

S

' | PROGRAM FUNCTI ON, SUBROUTI NE, or

' | BLOCK DATA st at ement

! o m e e e e e e

d i i IMPLICIT NONE statenent (1)

! ! o e e e e e e e

! ! ! IMPLICT

' ' 1 | statenments

' ! i PARAMETER R

' Comment | | statenents(4) i O her

' lines(2) | FORMAT | | specification

' i and ENTRY(3) 1 | statenents(4)

' | statenents R R R

' H 1 | Statement

' ' H 1 function

' i i DATA | statements(5)

i i | statenents SR R

' 1 i | Executable

' 1 i | statenents

o e m e m e e m e mmmm o mm o m = =

! END st at ement

o e m = =

Not es:

1. The IMPLICIT NONE statement, if used, nmust be the only IMPLICIT
statenent in a programunit.

2. Comment |ines may appear anywhere in a programunit before the END
statenent, even:

O Before a programunit's first statenment
O Between an initial line and its first continuation line
0O Between two continuation |ines.

3. An ENTRY statenent nust not appear between a block |IF statenment and
its corresponding END I F statenment, or between a DO statenent and the
term nal statement of its DO | oop.

4. Any specification statement that specifies the type of a constant's

name nmust precede the PARAMETER statenment that defines the name. A

| Copyright IBM Corp. 1987, 1990
26-1

SAA CPI FORTRAN Reference
Order of Statements and Comment Lines

PARAMETER st atement that defines a constant's name nust precede any
use of the nane.

A statenent function may reference another statement function that
precedes it, but not one that follows it.

| Copyright IBM Corp. 1987, 1990
26-2

SAA CPI FORTRAN Reference
Normal Execution Sequence and Transfer of Control

2.7 Normal Execution Sequence and Transfer of Control

Nor mal execution sequence is the execution of executable statenments in the
order in which they appear in a programunit. The normal execution
sequence begins with the first executable statenent in a main program

The normal execution sequence is not affected by nonexecutabl e statenents,
or by comment 1|ines.

A transfer of control is an alteration of the nornmal execution sequence.
Statenents that may be used to control the execution sequence are:

ad Control statenent

The term nal statenment of a DO | oo

O I nput/out put statements that contain an error specifier or end-of-fil
specifier.

O

When an external procedure is referenced, execution continues with the
first executable statenent follow ng the FUNCTI ON, SUBROUTI NE, or ENTRY
statement in the referenced procedure.

In this book, any description of the sequence of events in a specific
transfer of control assunes that no event, such as the occurrence of an
error or of a STOP statenment, changes that normal sequence.

| Copyright IBM Corp. 1987, 1990
27-1

SAA CPI FORTRAN Reference
Chapter 3. Data Types and Constants

3.0 Chapter 3. Data Types and Constants

A data type (or type) is a set of values and a length. Each variable,
array, constant, expression, and function has a data type.

Thi s chapter describes:

O How type is determ ned

O Each type and its pernmitted val ues

O Any necessary internal representation detail (usually only the |engt
of the type).

ad The form of constants for each type. (Se "PARAMETER Statenment” in
topic 6.6 for a description of naned constants.)

Subt opi cs

1 The Data Types

How Type |s Determ ned
| NTEGER*2 Type

| NTEGER*4 Type

REAL*4 Type

REAL*8 (Doubl e Precision) Type
COWPLEX*8 Type
COMPLEX*16 Type

LOGI CAL*1 Type

.10 LOGI CAL*4 Type

.11 CHARACTER Type

WWwwwwewww e
©O© 0N O O~ WN

| Copyright IBM Corp. 1987, 1990
3.0-1

SAA CPI FORTRAN Reference
The Data Types

3.1 The Data Types
The nine data types are: (1)

| NTEGER* 2

| NTEGER* 4
REAL* 4
REAL* 8
COVPLEX* 8
COVPLEX* 16
LOG CAL*1
LOG CAL* 4
CHARACTER

In this book, integer refers to | NTEGER*2 or | NTEGER*4, real refers to
REAL*4 or REAL*8 (REAL*8 is the sanme as double precision), conplex refers
to COVPLEX*8 or COWMPLEX*16, logical refers to LOG CAL*1 or LOGI CAL*4, and
character refers to CHARACTER.

(1) The formtype*length is an abbreviation derived fromthe
type statements. |NTEGER*2, for exanple, has the sane
meani ng as integer of length 2.

| Copyright IBM Corp. 1987, 1990
31-1

SAA CPI FORTRAN Reference
How Type Is Determined

3.2 How Type |Is Determ ned
Nanes and constants have type.
The type of a name is determ ned in either of two ways:

O Explicitly, by a type statement (|NTEGER, REAL, DOUBLE PRECI SI ON
COWVPLEX, LOG CAL, or CHARACTER) or, for external functions only, by
either a type statenent or a FUNCTI ON statenent.

O Implicitly, by the first letter of the name

- By default (that is, in the absence of an IMPLICIT statenent), if
the first letter of the nane is I, J, K, L, M or N, the type is
I NTEGER*4. If the first letter of the nanme is any other letter,
the type is REAL*4.

- To change, confirm or void this default typing you may use the
IMPLICIT statenent.

The type of a constant is determ ned by the formof the constant. The
di scussions of types in the rest of this chapter describe the formof a
constant for each type.

| Copyright IBM Corp. 1987, 1990
32-1

SAA CPI FORTRAN Reference
INTEGER*2 Type

3.3 INTEGER*2 Type

Type I NTEGER*2 is used for exact representati ons of integer val ues.
Length: 2 bytes.

Range of values: -32768 to 32767.

Form of constant: There are no constants (w thout nanes) of this type.

Not e that the PARAMETER statenent may be used to specify naned constants
of this type.

| Copyright IBM Corp. 1987, 1990
33-1

SAA CPI FORTRAN Reference
INTEGER*4 Type
3.4 | NTEGER*4 Type
Type I NTEGER*4 is used for exact representati ons of integer val ues.
Length: 4 bytes.

Range of values: -2147483647 to 2147483647.

For m of constant:

+
'
+
'

Exanpl es of | NTEGER*4 Const ants

25
+483
-111545

| Copyright IBM Corp. 1987, 1990
34-1

SAA CPI FORTRAN Reference
REAL*4 Type

3.5 REAL*4 Type

Type REAL*4 is used for approximations of real nunbers.
Length: 4 bytes.

Appr oxi mate range of val ues:

| On WS and VM

- 10(-78) to 10(75)
-0
- -10(-78) to -10(75)

Precision: values have a precision of 21 to 24 bits (about six deci mal
digits).

| On OS/ 400 and OS/ 2

- Nor mal i zed:
- 1.2 x 10(-38) to 3.4 x 10(38)
- 0
- -1.2 x 10(-38) to -3.4 x 10(38)
- Denor mal i zed:
- 1.4 x 10(-45) to 1.2 x 10(-38)
- -1.4 x 10(-45) to -1.2 x 10(-38)
- NaN (not a number)
- Positive infinity
- Negative infinity.

Precision: normalized val ues have a precision of 24 bits (about seven
deci mal digits) and denornmlized values may be represented with as
little as one bit of precision.

Subt opi cs
3.5.1 Forms of a Real Constant

| Copyright IBM Corp. 1987, 1990
35-1

SAA CPI FORTRAN Reference
Forms of a Real Constant

3.5.1 Fornms of a Real Constant

The fornms of a real constant are:

s
i

! R +

i 0 i

T digit----real _exponent---------------------------------- O
| o

! +- - -+

|

|

! o m - +

| 0 i

R o T R O
: o Pt 1o :

' +- - -+ ! i | +--real _exponent--+

! +---digit---+

|

|

! [e +

i 0 i

L R LI [R O
| L + | : |

! +- - -+ 1O Vo +- -real _exponent - -+

| +---digit---+

|

|

|

e e e e e e e e e e e e e e e e m o mmmmmm—m = =

The form of real _exponent (a real exponent) is:

'
'
'
'
'
m
!
'
'
'
'
'
'
'
'
'
'
'
'
'
=
«
-
:
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

The real exponent indicates the power of ten by which the value of the
real constant wi thout the exponent is nmultiplied to obtain the val ue of
the real constant with the exponent.

The system approxi mates real constants, just as the real type is used for
approxi mati ons of real nunmbers. FORTRAN products on conmputers with
different inplenentations of real (floating-point) arithnetic, as in the
case of VS FORTRAN, FORTRAN 400, and FORTRAN/ 2, have different
floating-point approximtions for the same real nunber.

Exanpl es of Real Constants

o m o m e o e oo +
1 3.14159 1 H
L T L '
| -.618034 1 '
Fommm e e T T T e '
| 7.0e3 i That is, 7.0 x 10(3) = 7000.0 '

| Copyright IBM Corp. 1987, 1990
351-1

SAA CPI FORTRAN Reference
Forms of a Real Constant

____________ O
9761. 25E+1 | That is, 9761.25 x 10(1) = 97612.5

____________)
7e-03 ! That is, 7.0 x 10(-3) = 0.007

____________ e — e e ———
744E5 ! That is, 744.0 x 10(5) = 74400000.0

| Copyright IBM Corp. 1987, 1990
351-2

SAA CPI FORTRAN Reference
REAL*8 (Double Precision) Type

3.6 REAL*8 (Doubl e Precision) Type

Type REAL*8, al so known as type double precision, is used for
approxi mati ons of real nunbers.

Length: 8 bytes.
Appr oxi mate range of val ues:
O On WS and VM

- 10(-78) to 10(75)
-0
- -10(-78) to -10(75)

Preci sion: values have a precision of 53 to 56 bits (about 16 deci nal
digits).

| On OS/ 400 and OS/ 2

- Nor mal i zed:

- 2.23 x 10(-308) to 1.79 x 10(308)

- 0

- -2.23 x 10(-308) to -1.79 x 10(308)
- Denor mal i zed:

- 4.94 x 10(-324) to 2.23 x 10(-308)

- -4.94 x 10(-324) to -2.23 x 10(-308)
- NaN (not a number)
- Positive infinity
- Negative infinity.

Precision: normalized val ues have a precision of 52 bits (about 16
deci mal digits) and denornmlized values may be represented with as
little as one bit of precision.

Subt opi cs
3.6.1 Forms of a Doubl e Precision Constant

| Copyright IBM Corp. 1987, 1990
36-1

SAA CPI FORTRAN Reference
Forms of a Double Precision Constant

3.6.1 Forms of a Double Precision Constant

The forns of a double precision constant are:

s
i

' I +

i O i

T digit----.-ccccmeccnannanann doubl e_exponent-------------- O

: o o i

| I | D b

d +---digit---+

i

! L +

i 0 i

R ----digit----doubl e_exponent------------- O

: R o

| # -+ 1O b

' +---digit---+

|

|

i

o o o e e e e e e e e e e e e e e e e e

The form of doubl e_exponent (a double precision exponent) is:

+
'
o
T
+
+
h
+
'

The doubl e precision exponent indicates the power of ten by which the
val ue of the double precision constant wi thout the exponent is multiplied
to obtain the value of the double precision constant with the exponent.

The system approxi mates doubl e precision constants, just as the double
precision type is used for approxi mations of real nunbers. FORTRAN
products on conputers with different inplementations of real
(floating-point) arithmetic, as in the case of VS FORTRAN, FORTRAN 400,
and FORTRAN/ 2, have different floating-point approximtions for the sane
real number.

Exanpl es of Doubl e Precision Constants

+
'
'
'
'
'
'
'
'
'
'

+
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

! 7D03 ' That is, 7.0 x 10(3) = 7000.0

o e e e e e e e e e e e e e e e e e e e
1 20d- 3 ! That is, 20.0 x 10(-3) = .02

o m eeee—eeaoo- +

| Copyright IBM Corp. 1987, 1990
36.1-1

SAA CPI FORTRAN Reference
COMPLEX*8 Type

3.7 COWLEX*8 Type

Type COVMPLEX*8 is an approximation to the value of a conplex nunber. The
representation of a conplex value is in the formof an ordered pair of
real values. The first of the pair represents the real part of the

conpl ex value and the second represents the inaginary part of the conplex

val ue.

Length: 8 bytes.

Range of values: each part has the range of the REAL*4 type. See page
3.5.

For m of constant:

ee(----- i nteger _constant----- EEREEE i nteger_constant-----)RR O
+--real _constant----- + +--real _constant----- +

Exanpl es of COMPLEX*8 Constants

(1, 1)

(.707, -0.707)
(-1, 2.)
(-1.5E10, 2.6e-5)

| Copyright IBM Corp. 1987, 1990
37-1

SAA CPI FORTRAN Reference
COMPLEX*16 Type

3.8 COWPLEX*16 Type

Type COWPLEX*16 is an approximation to the value of a conplex nunber. The
representation of a conplex value is in the formof an ordered pair of
doubl e precision values. The first of the pair represents the real part
of the conplex value, and the second represents the imaginary part of the
conpl ex val ue.

Length: 16 bytes.

Range of values: each part has the range of the REAL*8 type. See page
3. 6.

Forms of constant:

o e e e e e e e e e e e e e e e e m = =
|

' --(-doubl e_precision_constant--,----- integer_constant-------------)-- O

' +--real _constant-------------- '

' +- - doubl e_preci sion_constant--+

|

' --(----integer_constant-------------- ,--doubl e_precision_constant-)-- 0O

i +--real _constant-------------- i

d +--doubl e_preci sion_constant--+

I

|

|

e m e e e e e e e e e e e e e e e e e e e mmmmmmmmm e e e e e e m e e m e m e m e e e e e mm e m e m e mmmmmmmmm o mm =

Exanpl es of COWMPLEX*16 Constants

(1, 4.4D8)
(-5.5D3, -0.446)
(3.7d10, 8.6d5)

| Copyright IBM Corp. 1987, 1990
38-1

SAA CPI FORTRAN Reference
LOGICAL*1 Type
3.9 LOG CAL*1 Type
Type LOGI CAL*1 is an exact representation of the values true and fal se.
Length: 1 byte.
Range of values: true and fal se.
Form of constant: There are no constants (w thout nanes) of this type.

Not e that the PARAMETER statenent may be used to specify naned constants
of this type.

| Copyright IBM Corp. 1987, 1990
39-1

SAA CPI FORTRAN Reference
LOGICAL*4 Type
3.10 LOGI CAL*4 Type
Type LOGI CAL*4 is an exact representation of the values true and fal se.
Length: 4 bytes.

Range of values: true and fal se.

Form of constant: .TRUE. (for the value true) or .FALSE. (for the value
fal se).

| Copyright IBM Corp. 1987, 1990
3.10-1

SAA CPI FORTRAN Reference
CHARACTER Type

3.11 CHARACTER Type
Type CHARACTER is a string of characters.

Length: 1 to 32767 bytes. The length of a character datumis the nunber
of characters in the string. Each character in the string has a character
position that is nunbered consecutively 1, 2, 3, and so forth. The nunber
i ndi cates the sequential position of a character in the string, beginning
at the left and proceeding to the right.

Range of values: The string may consist of any characters in the FORTRAN
character set.

Form of constant: an apostrophe followed by a nonenpty string of
characters followed by an apostrophe. The delimting apostrophes are not
part of the data represented by the constant. Bl anks between the
delimting apostrophes are significant. An apostrophe within the
character constant is indicated by two consecutive apostrophes with no

i nterveni ng bl anks.

The length of a character constant is the nunber of characters between the
delimting apostrophes, except that each pair of consecutive apostrophes
counts as a single character. The delimting apostrophes are not counted.
The length of a character constant nust be greater than zero.

Exanpl es of Character Constants

B +
i Const ant | Length '
B o m m e e e e e e e e e e e e e meeao '
| ' Systens Application Architecture | 40 '
' FORTRAN ! :
L T '
P o1 i
L I B T T '
i '"The tinme is 1 o''clock’ 121 '
L L +

| Copyright IBM Corp. 1987, 1990
3.11-1

SAA CPI FORTRAN Reference
Chapter 4. Variables, Arrays, and Character Substrings

4.0 Chapter 4. Variables, Arrays, and Character Substrings
Thi s chapter describes:

o Iy |

O

Vari abl e

Array

Character substring

Definition status of variables, array elements, and characte
substrings

Vari able, array el ement, and character substring reference
Associ ati on

Subt opi cs

bl
o0 N WN

1

Vari abl es

Arrays

Character Substrings
Definition Status
Ref er ence

Associ ation

| Copyright IBM Corp. 1987, 1990
40-1

SAA CPI FORTRAN Reference
Variables

4.1 Variabl es

A variable has a name, a type, a length, and a value that may change
during program execution. The type of a variable is determ ned by the
type of its name.

Note that an array element is not the same as a variable, as it is in sone
ot her progranm ng | anguages.

| Copyright IBM Corp. 1987, 1990
41-1

SAA CPI FORTRAN Reference
Arrays

4.2 Arrays

An array has a nane, a type, and a sequence of values. Each elenent of an
array has an identical length and a value that may change during program
execution. The type of an array is determned by the type of its nane.

Subt opi cs

2.1 Array Decl arators

Ki nds of Array Decl arators and Arrays
Di mensi ons of an Array

Si ze of an Array

Array El ements

Arrangenment of Arrays in Storage

bl e
DN NN
o0 s N

| Copyright IBM Corp. 1987, 1990
42-1

SAA CPI FORTRAN Reference
Array Declarators

4.2.1 Array Declarators

An array decl arator declares the nane and size of an array. Every array
must be declared, and no array may have nore than one array declarator for
the same nanme. An array declarator nay appear in a DI MENSI ON, COWMON, or
type statement. The form of an array declarator is

array_name
is a name called the array nane. Each array elenment has the type and
Il ength associated with this nane.

di mensi on_decl ar at or
A di nensi on decl arator declares the | ower and upper bounds of a
di mensi on. Each di nension requires one dinmension declarator. The
m ni mum nunber of dinmensions (and therefore dinmension declarators) is
one and the maxi numis seven. The form of a dinension declarator is

+
!
.

2
=
|

==
5
@
o
>
o
o
c
S
a

:

'

,

,

+

| ower _di nensi on_bound
is an INTEGER*4 arithmetic expression, called a dinmension bound
expression. If this expression is not specified, a value of 1 is
assuned

upper _di mensi on_bound
is one of the follow ng:

0 A dimension bound expression whose value must be greater than
or equal to the value of the |ower dinension bound

O An asterisk if the dimension is the |last dimension in an
assunmed-si ze array declarator.

A di mensi on bound expression nust not contain a function or array
el ement reference. |Integer variables nay appear in dinmension bound
expressions only in adjustable array declarators

| Copyright IBM Corp. 1987, 1990
421-1

SAA CPI FORTRAN Reference
Kinds of Array Declarators and Arrays

4.2.2 Kinds of Array Declarators and Arrays

There are three kinds of array declarators:

O

A constant array declarator is one in which every di mensi on bound
expression is an integer constant expression.

An adjustable array declarator is one in which at |east one of the

di mensi on bound expressions contains at |east one integer variable
name. Any variable nanme so used must appear either in a common bl ock
or in the same dumry argunment |ist that contains the array nane. An
adj ustabl e array decl arator declares an adjustable array and its

di mensi ons are call ed adj ustabl e di nensi ons.

An assuned-size array declarator is one in which the upper dinmension
bound of the last dimension is an asterisk.

There are two kinds of arrays:

O

O

An actual array is one that is declared with a constant array

decl arator and whose nane is not a dummy argunent. This kind of array
may be declared in a DI MENSI ON statement, a COMMON statenment, or a
type statenent.

A dummy array is one that may be declared with constant, adjustable,
or assuned-size array declarators and whose nane nust be a dummy
argument. This kind of array may be declared in a DI MENSI ON st at enent
or a type statenment.

Exanpl es of Adjustable and Assunmed-Size Array Decl arators

subrouti ne SCRFCN(screen, wi dth,|ines, nops, op_codes)
integer width,I|ines, nops, op_codes

character*1l screen(1:w dth,0:1ines-1)

di mensi on op_codes(*)

| Copyright IBM Corp. 1987, 1990
422-1

SAA CPI FORTRAN Reference
Dimensions of an Array

4.2.3 Dinmensions of an Array

The size of a dinension is the value of the upper dinmension bound, m nus
the value of the |ower dinmension bound, plus one. The size of a dinmension
that has an upper dinension bound of an asterisk is not specified.

The nunber and size of dinmensions in one array declarator may be different
fromthe nunber and size of dinmensions in another array declarator that is
associ ated by common, equival ence, or argunment association.

| Copyright IBM Corp. 1987, 1990
423-1

SAA CPI FORTRAN Reference
Size of an Array

4.2.4 Size of an Array

The size of an array (that is, the number of elements in an array) is
equal to the product of the sizes of its dinmensions.

| Copyright IBM Corp. 1987, 1990
424-1

SAA CPI FORTRAN Reference
Array Elements

4.2.5 Array Elenents

An array is made up of array elenents. An array element is identified by
an array el enent name, whose formis:

!
!
!
]
=
-
<)
|~<
>
3
.
!
—
!
!
=]
=4
1]
«Q
]
=
|
[¢]
x
ko)
=
|
%]
-
!
:
-
:
!
!
!
!
!
!
!
!
!
!
!
!
:
!
!
!
!
!
!
!
!
!
!
!
!
!
!
:
!
!
[}

array_name
is a nane.

i nt eger _expr
is an integer expression called a subscript expression.

The nunmber of subscript expressions nust be equal to the number of
di mensions in the array.

The val ue of each subscript expression nmust be greater than or equal to
the correspondi ng | ower di mension bound declared for the array. The value
of each subscript expression nust not exceed the correspondi ng upper

di mensi on bound declared for the array. |f the upper dinmension bound is
an asterisk, the value of the correspondi ng subscript expression nust be
such that the subscript value does not exceed the size of the actual

array.

The subscript value determ nes which elenment of the array is identified by
the array el ement nane. The subscript value depends on the val ues of the
subscript expressions and on the dinmensions of the array. See
"Arrangenent of Arrays in Storage" in topic 4.2.6 for an exanple.

| Copyright IBM Corp. 1987, 1990
425-1

SAA CPI FORTRAN Reference
Arrangement of Arrays in Storage

4.2.6 Arrangenent of Arrays in Storage

Array el ements are stored in ascending storage units in colum-nmajor
order, as in the follow ng exanple of a two-dimensional array declared by
array declarator C(3,0:1):

Val ue

Lowest storage unit-- C(1,0) !
C(2,0) i
C(3, 0) i
(1, 1) i
c(2,1) i
c(3,1) i

D 01~ WDN PP

Hi ghest storage unit--

| Copyright IBM Corp. 1987, 1990
426-1

SAA CPI FORTRAN Reference
Character Substrings

4.3 Character Substrings

A character substring is a contiguous portion of a character string. A
character substring is identified by a substring name, whose formis:

————— variable_name------c-cc(mmmmmemmeee et e ettt et s e e s) s e e e e e -
+--array_el ement _nane- - + +--integer_expril--+ +--integer_expr2--+

vari abl e_nane
is the nane of a character variable.

array_el ement _name
is the name of a character array el enment.

integer_exprl and integer_expr2
specify the | eftnost character position and rightnost character
position, respectively, of the substring. Each is an expression
called a substring expression, which is any integer expression.

The values of integer_exprl and integer_expr2 nmust be such that:

1 = integer_exprl = integer_expr2 = length
where length is the length of the character variable or character
array elenent. |If integer_exprlis omtted, a value of 1 is inplied.

If integer_expr2 is omtted, a value of length is inplied.

Exanpl e of a Character Substring Nane: See "Exanples of Character
Assi gnment Statenents" in topic 8.4.

| Copyright IBM Corp. 1987, 1990
43-1

SAA CPI FORTRAN Reference
Definition Status

4.4 Definition Status

At any given time during the execution of a program the definition status
of each variable, array element, or character substring is either defined
or undefined:

O If defined, it has a value. The value does not change until the
vari able, array element, or character substring becomes undefined or
until it is redefined with a different value

O If undefined, it does not have a predictable value

A character variable, character array elenent, or character substring is
defined if each of its substrings of length 1 is defined. A conplex
vari able or conplex array elenment is defined if each of its parts is
defined.

A variable, array elenent, or character substring nmust be defined at the
time its value is required. A value may be assigned (thus causing

definition) by:

| An assignnent statenment

ad An input statenent. Each variable, array element, or characte
substring in the input |ist becomes defined at the tinme it is assigned
a val ue

O A specifier in an input/output statenent

O A DO statenent. The DO vari abl e becomes defined

O An inmplied-DO Iist. The inplied-DO variable becomes defined

O A DATA statenent. Initial values are provided

g An ASSI GN st at enent

ad Associ ation. Totally-associated variables of the sanme type, arra
el ements of the same type, or character substrings becone defined when
any one is defined. (Association is total when there is one-for-one
storage mapping.)

A variable, array element, or character substring may becone undefined as
foll ows:

O Al are undefined at the begi nning of program execution except fo
those specified in DATA statenents.

O When a variable, array elenent, or character substring becone
defined, all associated variables, array el enents, and character
substrings of different type beconme undefined. (Conplex and character
types are special cases, as already described.)

O An ASSI GN statenment causes the specified variable to becone undefine
as an integer.

O If a reference to a function does not need to be evaluated t
determ ne the value of the expression in which it appears, then any
vari ables, array elenents, and character substrings in common bl ocks
and any argunents, that the function would have defined, becone

| Copyright IBM Corp. 1987, 1990
44-1

SAA CPI FORTRAN Reference
Definition Status

undef i ned.

A RETURN or END statenment causes all variables, array elenents, an
character substrings in the subprogramto become undefined except for
the foll ow ng:

- Those in a blank common bl ock

- Those initially defined that neither were redefined nor becane
undef i ned

- Those specified by SAVE statenents

- Those specified in a named common bl ock that appears in at |east
one other programunit that is either directly or indirectly
referencing the subprogram

An error or end-of-file condition during an input statement causes al
of the variables, array elements, and character substrings specified
in the input Iist to become undefined

A direct access input statenent that specifies a record that was no
previously witten causes all of the variables, array elements, and
character substrings in the input list to become undefined

The | NQUI RE statenment may cause sone variables, array elements, o
substrings to becone undefined. See "INQUI RE Statement" in
topic 11.7.

| Copyright IBM Corp. 1987, 1990
4.4-2

SAA CPI FORTRAN Reference
Reference

4.5 Reference

A variable, array elenment, or character substring reference is the
appearance of a variable nane, array el ement nane, or character substring
name in a statenent in a context requiring the value of the variable,
array el ement, or character substring to be used during program execution.
When a reference is executed, the current value of the variable, array

el enment, or character substring is available. Definition of a variable,
array element, or character substring is not considered a reference.

| Copyright IBM Corp. 1987, 1990
45-1

SAA CPI FORTRAN Reference
Association

4.6 Association

Associ ation exists if the same data item may be identified by different
nanes in the sane programunit, or by the same name or different names in
different programunits of the same executable program The kinds of
associ ation are:

Equi val ence associ ation (see page 6. 2)
Common associ ation (see page 6.3.1)
Entry association (see page 10. 3. 3)
Argument association (see page 10.8.1).

O 0Oo0oaog

| Copyright IBM Corp. 1987, 1990
46-1

5.0 Chapter 5.
An expression,

Expressi ons
when eval uat ed

the four kinds of expressions
O Arithmetic expression

O Character expression

O Rel ati onal expression

O Logi cal expressions

Subt opi cs

5.1 Arithmetic Expressions
5.2 Character Expressions
5.3 Rel ati onal Expressions

5.4 Logi cal Expressions

SAA CPI FORTRAN Reference
Chapter 5. Expressions

produces a value. This chapter

| Copyright IBM Corp. 1987, 1990
50-1

descri bes

SAA CPI FORTRAN Reference
Arithmetic Expressions

5.1 Arithmetic Expressions

An arithmetic expression, when evaluated, produces a nuneric value. The
formof an arithmetic expression is:

s
:

R arith_term---------------------------- O

' B + -

i +--arith_expr--+ +- - -+

I

|

i

e m e e e e e e e e e e e e e e e e e e e mmmmmmmmm e e e e e e m e e m e m e m e e e e e mm e m e m e mmmmmmmmm o mm =
The formof arith_ternis:

o e e e e e e e e e e e e e e e e m = =
|

T e arith_factor--------------------------- O

' +--arith_term----/----- +

' +--*o -+

I

1

i

o e mm e e e e e mm e e mmmmm e e e mm e e e e e e e e e e m e e m e mmmmmmm ==
The formof arith_factor is:

e e e e e e e e e e e e e e e e m o mmmmmm—m = =
|

' - L A L 11 U A e L O

' +--**..arith_factor--+

|

|

|
o

arith_primary (called a primary) is one of the follow ng:

An unsigned arithmetic constan

The name of an arithnmetic constan

The name of an arithnmetic vari abl

The name of an arithmetic array el emen
An arithmetic function referenc

OO0Oo0Oooao

An arithmetic expression enclosed in parentheses

The arithmetic operators are:

B +
I Arithmetic | H '
i Operator | Representing | Precedence i
B P R o m e !
A i Exponenti ation i Hi ghest '
B o m e e e e e e e aao-- o e e e e e e e e e aoaooo !
. I Multiplication ! Internediate !
B o mm o m e e e e e e e e aoa- o m e e e e e e e e e aoaon '
Vo i Division i Internedi ate '
L A o e e e e e e e e oo oo '
. | Addition or identity | Lowest 1
L N IR T T '
V- | Subtraction or i Lowest '

| Copyright IBM Corp. 1987, 1990
51-1

SAA CPI FORTRAN Reference
Arithmetic Expressions

! | negation !

In evaluating an arithnetic expression containing two or nore addition or
subtraction operators, the terms are evaluated fromleft to right. For
exanple, 2+3+4 is evaluated the same as (2+3) +4.

In evaluating a termcontaining two or nore nultiplication or division
operators, the factors are evaluated fromleft to right. For exanple,
2*3*4 is evaluated the same as (2*3)*4.

In evaluating a factor containing two or nore exponentiation operators,
the primaries are conbined fromright to left. For exanple, 2**3**4 is
eval uated the same as 2**(3**4).

In evaluating an arithnetic expression containing two or nore operators
havi ng different precedence, the precedence of the operators determ nes
the order of evaluation. For exanple, in the expression -A**3, the
exponentiation operator (**) has precedence over the negation operator
(-). Therefore, the operands of the exponentiation operator are combi ned
to forman expression that is used as the operand of the negation
operator. Evaluation of the expression is the sane as evaluation of the
expressi on - (A**3)

Note that these formation rules do not permt expressions containing two
consecutive arithmetic operators, such as A**-B or A*-B. However,
expressions such as A**(-B) and A*(-B) are perm tted.

Subt opi cs
5.1.1 Arithnetic Constant Expressions
5.1.2 Data Type of an Arithmetic Expression

| Copyright IBM Corp. 1987, 1990
51-2

SAA CPI FORTRAN Reference
Arithmetic Constant Expressions

5.1.1 Arithnetic Constant Expressions

An arithmetic constant expression is an arithmetic expression in which
each primary is an arithnetic constant, the name of an arithnmetic
constant, or an arithmetic constant expression enclosed in parentheses.
Exponentiation is permtted only if the exponent is of type integer.

An integer constant expression is an arithnetic constant expression in
whi ch each constant or name of a constant is of type integer.

| Copyright IBM Corp. 1987, 1990
51.1-1

SAA CPI FORTRAN Reference
Data Type of an Arithmetic Expression

5.1.2 Data Type of an Arithmetic Expression

Because the identity and negati on operators operate on a single operand,
the type of the resulting value is the same as the type of the operand.

When an arithnetic operator acts upon a pair of operands of the sane type,
the resulting value has that type. |If the operands are of different
types, the resulting value has the higher-ranking type, with the exception
not ed:

1
1
Hi ghest | COWPLEX*16

i COMPLEX* 8 (See note.)
| REAL*8 (See note.)
| REAL*4
| | NTEGER* 4
|

|

1

1

| NTEGER* 2

Note: |If one operand is of type COMPLEX*8 and the other is of type
REAL*8, the result is of type COVMPLEX*16.

For exanple, addition of a COMPLEX*8 value and a REAL*4 val ue produces a
result of type COMPLEX*8.

Exanpl es of Arithnmetic Expressions

e T +
| Arithmetic i Fully Parenthesized Equival ent '
| Expression H '
E E N N e '
I -b**2/2.0 1 - ((b**2)/2.0) 1
o R T R !
: |**J**2 1 i**(j**z) :
R . L S !
| alb**2 - ¢ i (al(b**2)) - ¢ '
B +

| Copyright IBM Corp. 1987, 1990
51.2-1

SAA CPI FORTRAN Reference
Character Expressions

5.2 Character Expressions

A character expression, when eval uated, produces a result of type
character. The formof a character expression is:

+

'

'
o
>
)
=

|
]
x

e
=

'

'
-~
-

'

'

+

char_primary (called a character primary) is one of the follow ng:

A character constan

The name of a character constan

The name of a character vari abl

The name of a character array el enen
The name of a character substrin

A character function referenc

OOooOoo0oooao

A character expression enclosed in parentheses
The only character operator is //, representing concatenation.

In a character expression containing one or nore concatenation operators,
the primaries are joined, thereby form ng one string whose |ength is equal
to the sumof the lengths of the individual primaries. For exanple, 'AB
/1 'CD [/ "EF' is evaluated to ' ABCDEF'. The length of the resulting
string is six.

Par ent heses have no effect on the value of a character expression.

Except in a character assignnent statement, a character expression nust
not involve concatenation of an operand whose | ength specifier is an
asterisk in parentheses (indicating inherited |ength) unless the operand
is the nane of a constant.

Subt opi cs
5.2.1 Character Constant Expressions

| Copyright IBM Corp. 1987, 1990
52-1

SAA CPI FORTRAN Reference
Character Constant Expressions

5.2.1 Character Constant Expressions
A character constant expression is a character expression in which each
character primary is a character constant, the nane of a character

constant, or a character constant expression enclosed in parentheses.

Exanpl e of a Character Expression

character*3 fnane, | name

data fname,lnane /'Big',"'Ben'/
* Next line prints Big Ben

print *, fname // ' ' [/ |name

| Copyright IBM Corp. 1987, 1990
521-1

SAA CPI FORTRAN Reference
Relational Expressions

5.3 Rel ati onal Expressions

A rel ational expression, when eval uated, produces a result of type
logical. A relational expression may appear only within a | ogical
expression. A relational expression may be an arithnetic relational
expression or a character relational expression.

Subt opi cs
5.3.1 Arithmetic Rel ational Expressions
5.3.2 Character Relational Expressions

| Copyright IBM Corp. 1987, 1990
53-1

SAA CPI FORTRAN Reference
Arithmetic Relational Expressions

5.3.1 Arithmetic Relational Expressions

An arithmetic relational expression conpares the values of two arithnetic
expressions. Its formis:

|

|

.
o
=
=

I:T
o
x
kel
=
i

.

|

|
.
o
()
2
o
]
L

|
o

©
@
=
Q
2
o
=

.

.

.
Q
=
-

l:T
@
X
©
=
N

.

.

.

.

.

.

.

.

.

.

.

|

|

.

.

|

|

.

.
]

arith_expril
arith_expr2
are each an arithmetic expression.

rel ati onal _oper at or
is any of the follow ng:

Rel ati onal

Oper ator Representing

.LT. Less than

. LE. Less than or equal to

. EQ Equal to

. NE. Not equal to

. GT. Greater than

. GE. Greater than or equal to

If either arith_exprl or arith_expr2 is of type conplex, only the
rel ati onal operator .EQ or .NE. may be specified.

If arith_exprl and arith_expr2 are of different data types, the value of
the relational expression is the value of the expression:

((arith_exprl) - (arith_expr2)) rel ati onal _operator 0

where 0 is of the same type as the expression ((arith_exprl) -
(arith_expr2)).

On 0OS/2, if the value of either arith_exprl or arith_expr2 is a NaN (not a
number), the value of the relational expression is false.

On OS/400, if the value of either arith_exprl or arith_expr2 is a NaN (not
a nunber), the value of the relational expression is undefined.

Exanpl e of an Arithnetic Rel ati onal Expression

if (e .gt. emax) emax = e

| Copyright IBM Corp. 1987, 1990
53.1-1

SAA CPI FORTRAN Reference
Character Relational Expressions

5.3.2 Character Relational Expressions

A character relational expression conpares the values of two character
expressions. Its formis:

'

'

'
o
>
o
=

|
@
x
)
=
N

.

'

:
=
@
o
=
)
]
2

|
)

©
@
=
o
2
)
=

:

'

'
(2]
>
o
=

|
)
x
)
=
N

)

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'
O

char _expr1l
char _expr2
are each a character expression.

rel ati onal _oper at or
is any of the relational operators described under "Arithnetic
Rel ati onal Expressions" in topic 5.3.1.

For operators other than .EQ and .NE., the system dependent collating
sequence (determ ned by the EBCDI C coded character set on WS, VM and

0OS/ 400, and the ASCI| coded character set on OS/2) is used in interpreting
a character relational expression. The character expression whose val ue
is lower in the collating sequence, when evaluated fromleft to right, is
considered to be less than the other. The lexical intrinsic functions
(LGE, LGT, LLE, and LLT), which convert character strings to ASCII| prior
to conparing them may be used to conpare character strings in ASClI

order.

If the two character expressions are of unequal |ength, the shorter one is
considered to be extended on the right with blanks to the Iength of the

| onger one.

Exanpl e of a Character Rel ati onal Expression

if (chr .gt. "0 .and. chr .le. "9') chr_type = digit

| Copyright IBM Corp. 1987, 1990
53.2-1

SAA CPI FORTRAN Reference
Logical Expressions

5.4 Logi cal Expressions

A |l ogical expression, when eval uated, produces a result of type |ogical
The form of a |ogical expression is:

s
|

T R | ogical _disjunct---------------- O

' +--1ogical _expr----- EQV.------ +

' +--. NEQV. - - +

I

|

i

e m e e e e e e e e e e e e e e e e e e e mmmmmmmmm e e e e e e m e e m e m e m e e e e e mm e m e m e mmmmmmmmm o mm =
The form of a logical _disjunct is:
s
|

T e R logical _term----------------------- O

' +--1ogical _disjunct--.0R --+

I

1

i

o e mm e e e e e mm e e mmmmm e e e mm e e e e e e e e e e m e e m e mmmmmmm ==
The formof a logical _tern is:

e e e e e e e e e e e e e e e e m o mmmmmm—m = =
|

e logical _factor----------cmommmmnon O

' +--logical _term-.AND. --+

|

|

|
o
The form of a logical _factor is

o e mm e e e e e mm e e mmmmm e e e mm e e e e e e e e e e m e e m e mmmmmmm ==
|

e logical _primary----------------cmmmm O

' +--.NOT. - -+

|

I

|
s

| ogical _primary (called a logical primary) is one of the foll ow ng:

A | ogi cal constan

The name of a |ogical constan

The name of a |ogical variab

The name of a |ogical array el enen

A logical function referenc

A rel ational expressio

A | ogical expression enclosed in parentheses

Oo0oo0oo0oooao

The | ogi cal operators are:

| Logi cal 1
| Operator |

1
1
Representing i Precedence

| Copyright IBM Corp. 1987, 1990
54-1

SAA CPI FORTRAN Reference
Logical Expressions

Feomeme e R e !
i . NOT. i Logi cal negation | Highest

L B o m m e amao '
i . AND. i Logical conjunction | Higher '
L T o m m e e e e e e e e e e e e e e e e e e e oo '
I OR \ Logical inclusive i Internmediate 1
' i disjunction 1 1
Feemm e E T B T L '
I . EQV. \ Logical equivalence | Lowest '
o I R !
1. NEQV. i Logi cal i Lowest '
d | nonequi val ence d '
R L i +

In evaluating a | ogical expression containing two or nore operators having
di fferent precedence, the precedence of the operators determ nes the order
of evaluation. For exanple, evaluation of the expression A .OR. B .AND. C
is the same as eval uation of the expression A .OR (B .AND. C).

Subt opi cs

5.4.1 Val ue of a Logical Expression
5.4.2 Logical Constant Expressions
5.4.3 Precedence of Operators

| Copyright IBM Corp. 1987, 1990
54-2

SAA CPI FORTRAN Reference
Value of a Logical Expression

5.4.1 Value of a Logical Expression

Assume that x[1] and x[2] represent |ogical values. Then, if the value of
x[1] is true, the value of .NOT.x[1] is false; if the value of x[1] is
false, the value of .NOT.x[1] is true. Use the following truth table to
determ ne the values of other |ogical expressions:

o o e e e e e e e e e e e e e e e e
vox[1 o o x[2] i X[1]. AND. x[2] 1 x[1]. OR x[2] 1 x[1] . EQV. x[2] i x[1] . NEQV. X[2]
oo oo S e e oo oo oo
| False | False | | Fal se | Fal se i True 1 Fal se

oo S oo oo oo oo
| False | True | ! Fal se I True | Fal se I True

oo S oo oo e oo
I True | False | | Fal se I True | Fal se I True

[Fomm e m B o e e e e e e aa o S e
i True | True | I True i True 1 True | Fal se

e e m e e c e e e e mmmmemeecececsmemsmmmmmemememsmsm-e-msmsmsmsmsmsmsmsmsmmmmeammmmmmmm--ecececcc-m-m--------m--ssmmcemm————————-a

Sometinmes a | ogical expression does not have to be conpletely evaluated in
order to have its value determ ned. Consider the follow ng | ogical
expression (assunme that LFCT is a function of type logical):

A .lt. B .or. LFCT(2)

If Ais less than B, then the function reference does not have to be
evaluated to determine that this expression is true.

| Copyright IBM Corp. 1987, 1990
541-1

SAA CPI FORTRAN Reference
Logical Constant Expressions

5.4.2 Logical Constant Expressions

A |l ogical constant expressionis a |logical expression in which each
primary is a logical constant, the name of a logical constant, a

rel ati onal expression in which each primary is a constant expression, or a
| ogi cal constant expression enclosed in parentheses.

| Copyright IBM Corp. 1987, 1990
542-1

SAA CPI FORTRAN Reference
Precedence of Operators

5.4.3 Precedence of Operators

A | ogi cal
does, the expression is evaluated fromleft to right,
foll owi ng precedence anbpng operators:

g
i Operator | Precedence
E S L T
I Arithnmetic i Highest
R R
| Character |
R R T
i Rel ational '
B o m m e e e e e e e e e e e e e e e eama—-
i Logi cal | Lowest
o e e e e e e e e e e e e e e e e e m o mm = =
For exanple, the |ogical expression:

L .or. A+ B .ge. C

where L is of type logical, and A, B, and C are of

the same as the | ogical expression:

type real,

L .or. ((A+ B) .ge. O

| Copyright IBM Corp. 1987, 1990
543-1

expression may contain nore than one kind of operator.

When it

according to the

is eval uated

SAA CPI FORTRAN Reference
Chapter 6. Specification Statements
6.0 Chapter 6. Specification Statenments
Specification statements are nonexecutable statenments that describe the
characteristics and arrangenent of data.

This chapter describes the specification statenents:

DI MENSI O

EQUI VALENC

Covwmo

Type: | NTEGER, REAL, DOUBLE PRECI SI ON, COWMPLEX, LOGI CAL, and CHARACTE
| MPLI CI

PARAVETE

EXTERNA

I NTRI NSI

SAVE

OO oooOooooao

Wthin a programunit, a name nust not appear nore than once in the sane
ki nd of specification statenent, with these exceptions: a name in an
EQUI VALENCE st at enent may appear nore than once in the sane or in

di fferent EQUI VALENCE statenments, and a common bl ock name nmay appear nore
than once in the same or in different COMON statenents.

Subt opi cs

1 DI MENSI ON St at enent
EQUI VALENCE St at ement
COMVON St at enent

I MPLICIT Statenent
PARAMETER St at enent
EXTERNAL St at ement
I NTRI NSI C St at enent
SAVE St at enment

0200000 o
© ® N O TN WN

| Copyright IBM Corp. 1987, 1990
6.0-1

| NTEGER, REAL, DOUBLE PRECI SI ON, COWMPLEX, LOGI CAL, and CHARACTER Type Statements

SAA CPI FORTRAN Reference
DIMENSION Statement

6.1 DI MENSI ON St at enent

o m e e e e e e e e e e e e +

I WS | VvV | 0OS/400 | OS/2 |

o e - oo e m e e e o e 1

X X X 4 X

e +

o e m e e e e e e e mm e e e e e e mmmmm o — =
i

' ---DI MENSI ON---array_declarator _|isSt--------------------------------- O

|

|

|

e e e e e e e e e e e e e e e e m o mmmmmm—m = =

array_decl arat or
is an array declarator.

The DI MENSI ON st atenent specifies the names and di nensi on decl arators of
arrays. See "Arrays" starting on page 4.2 for a description of arrays and
an exanple of the DI MENSI ON statenent.

| Copyright IBM Corp. 1987, 1990
6.1-1

SAA CPI FORTRAN Reference
EQUIVALENCE Statement

6.2 EQUI VALENCE St at ement

o m e e e e e e e e e e e e +

I WS | VNV | 0OS/400 | Os/2 |

o e - oo e m e e e o e 1

pooX 0 X X b X

e +

o e m e e e e e e e e e e e mmmm— ==
i

! R B +

: : LREEE RS L

| 0 0 i i

! - - - EQUI VALENCE- - - (- - nanme- - - - - ,--name----- R

|

I

|

e e e e e e e e e e -memem-mmmmmmemsmsmsmsmsmemss-eccees-sesmsmsmsmmmmsmmsmmsmmmmmmmmmmmmmmmmmmmmm=—===
name

is one of the follow ng:

O A variable name that is not also a function name (that is, the
return value of a function is not specified)

O An array name

O An array element name in which the subscript expressions are
i nteger constant expressions

0 A character substring name in which the substring expressions are
i nt eger constant expressions.

name nust not be a dumry argument nane.

The EQUI VALENCE st atement specifies that two or nore variables, arrays,

array el ements, or character substrings in a programunit are to share the

same storage.

Al items named within a pair of parentheses have the same first storage
unit and are therefore associated. This is called equival ence
association, and it may cause the association of other items as well.
(See "Exanple 2 of an EQUI VALENCE Statenent.") Specifying an array name
for name has the sane effect as specifying an array el ement nane that
identifies the first element of the array.

Associated itens may be of different data types. |If so, the EQUI VALENCE
statenment does not cause type conversion.

The |l engths of associated items are not required to be the sane.

An EQUI VALENCE st at enent cannot cause the storage sequences of two
di fferent common bl ocks to be associ ated.

Exanple 1 of an EQUI VALENCE St at enent

doubl e precision A(3)
real B(5)
equi val ence (A B(3))

The precedi ng statements associate storage units as follows:

| Copyright IBM Corp. 1987, 1990
6.2-1

SAA CPI FORTRAN Reference
EQUIVALENCE Statement

I T I +
A
| Array | b----- A(1)----t-m-- A(2)----t--- A3)----1
LA : :
oo - 0 '
i Array | [-B(1)-1-B(2)-1-B(3)-i-B(4)-1-B(5)-] i
| B : :
L T L L R +

Exanpl e 2 of an EQUI VALENCE Statenent: This exanple shows how associ ation
of two itens may result in further association. The statenents:

character A*4,B*4,C(2)*3
equi val ence (A C(1)), (B, C(2))

associ ate storage units as follows:

o o m s C mm m hm m e m m e m mmm Do mm m ot mC e oo mm e m s mm e m e s m e m e e e m e m s e s s mmmm—m—o----- +
| I | 1 I I I I I I I
1 I 1 1 1 1 I I I I I
[IR R T '
| Variable] }------------- Accmeemeeeeee i '
PA i i
e I e !
| Variabl e] e B------------- | :
. B i !
Fommmaaaas L e e N N S !
I C(1)-------- oo C(2)-------- : :
I C 1 i
B +

Because A and B are associated with C, A and B beconme associated with each
ot her.

| Copyright IBM Corp. 1987, 1990
6.2-2

SAA CPI FORTRAN Reference
COMMON Statement

6.3 COVMMON St at ermrent

o m e e e e e e e e e e e e +
I WS | VNV | 0OS/400 | O©OS/2

o e - oo e m e e e o e 1

X X X X

e +

o e m e e e e e e e mm e e e e e e mmmmm o — =
i

' == COMMON- - - - - - s s o e e name_lisSt--------------------

' Fof e /-+

! +- conmon_bl ock_nane- +

i

e e O

: R EEEREE +

i ¢ o b

' e R R /-name_list---+

' + ., + +-common_bl ock_nane- +

I

1

i

o e m e e e e e e e mm e e e e e e mmmmm o — =

common_bl ock_nane
is a common bl ock nane.

name
is a variable name, array name, or array declarator. None of these
names may be used as a dummy argunent name or a function nane.

The COMMON st atenment specifies comon bl ocks and their contents. A common
bl ock is a storage area that can be shared by two or more programunits
allowing themto define and reference the same data and to share storage
units.

A common bl ock may be given a nane. |If common_bl ock_name is specified
all variables and arrays specified by the followi ng nane_list are decl ared
to be in that named common bl ock. |f common_bl ock_nane is omtted, al

vari abl es and arrays specified by the following name_list are in a blank
common bl ock.

Wthin a programunit, a common bl ock nane may appear nmore than once in
the same or in different COMON statenents. Each successive appearance of
the same commmon bl ock nane continues the comon bl ock specified by that
name.

The variabl es and arrays in a common bl ock may have different data types

Subt opi cs

6. 3.1 Common Associ ation

.2 Common Bl ock Storage Sequence

.3 Size of a Common Bl ock

.4 Differences between Naned Common Bl ocks and Bl ank Common Bl ocks
.5 Restriction on Conmon and Equival ence

© o oo
W W W w

| Copyright IBM Corp. 1987, 1990
6.3-1

SAA CPI FORTRAN Reference
Common Association

6.3.1 Common Associ ation

Wthin an executable program all named conmon bl ocks with the same nane
have the same first storage unit. Wthin an executable programthere can
be one bl ank comon bl ock, and all programunits that refer to bl ank
common refer to the sane first storage unit. This results in the

associ ation of variables and arrays in different programunits.

Because association is by storage unit, variables and arrays in a common
bl ock may have different nanes and types in different program units.
Furthernore, a nane that is used for a variable in one programunit may be
used for an array in another programunit.

| Copyright IBM Corp. 1987, 1990
6.3.1-1

SAA CPI FORTRAN Reference
Common Block Storage Sequence

6.3.2 Common Bl ock Storage Sequence

Vari ables and arrays within a comon bl ock are assigned storage units in
the order that their names appear within the COMON statenent.

A common bl ock may be extended by using an EQUI VALENCE st atenment, but only
by addi ng beyond the last entry, not before the first entry. For exanple,
the statenents:

common / X/ A, B
real C(2)

equi val ence (B, C)

speci fy common bl ock X as follows:

B +
| 1 1 1 1] I I I I I I I | [l
I 1 1 1 1 1 I] I I I I I I [
oo - 0 '
| Variable} }--------- O 1 '
LA ! i
[IR R T '
i Vari abl e] HEEE R B--------- ' H
!B ! i
R e R !
| Array | R C(1)------- R c(2)-------)
e : :
R L i +

| Copyright IBM Corp. 1987, 1990
6.32-1

SAA CPI FORTRAN Reference
Size of a Common Block

6.3.3 Size of a Conmon Bl ock

The size of a common block is equal to the nunber of bytes of storage
needed to hold all the variables and arrays in the common bl ock, including
any extensions resulting from equival ence associ ati on.

| Copyright IBM Corp. 1987, 1990
6.3.3-1

SAA CPI FORTRAN Reference
Differences between Named Common Blocks and Blank Common Blocks

6.3.4 Differences between Nanmed Common Bl ocks and Bl ank Common Bl ocks
The differences between named common bl ocks and bl ank common bl ocks are:

O W thin an executable program there may be more than one naned commo
bl ock but only one bl ank common bl ock.

O In all programunits of an executable program named common bl ocks o
the same nane nust have the same size, but blank conmon bl ocks may
have different sizes. (If blank common bl ocks are specified with
different sizes in different programunits, the |length of the | ongest
becones the | ength of the one blank comon bl ock in the executable
program)

0O Variables and array elements in a named conmon bl ock may be initiall
defined by using the DATA statement in a block data subprogram
Vari ables and array elenments in a blank conmon bl ock cannot be
initially defined.

| Copyright IBM Corp. 1987, 1990
6.34-1

SAA CPI FORTRAN Reference
Restriction on Common and Equivalence

6.3.5 Restriction on Conmon and Equival ence

An EQUI VALENCE st at enent cannot cause the storage sequences of two
di fferent common bl ocks to become associ ated.

Exanpl e of a COVMMON St at enent

i nt eger nonth, day, year
common /date/ nonth, day, year

| Copyright IBM Corp. 1987, 1990
6.35-1

SAA CPI FORTRAN Reference
INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and CHARACTER Type Statements

6.4 | NTEGER, REAL, DOUBLE PRECI SI ON, COWPLEX, LOGI CAL, and CHARACTER Type Statenents

S +

' WS | VvV | OS/400 | os/ 2 |

o e - oo e m e e e o e 1

i X X X X

L e +

o e m e e e e e e e mm e e e e e e mmmmm o — =
R YA oI oY oY R e I i e

O

type_spec
specifies a data type and is one of the follow ng:

| NTEGER* 2

| NTEGER][* 4]

REAL[* 4]

REAL* 8

DOUBLE PRECI SI ON
COMPLEX[* 8]

COVPLEX* 16

LOGI CAL* 1

LOGI CAL[* 4]
CHARACTER][*char _I en]

char _sep
is a comm (,) and may be specified when type_spec is
CHARACTER] *char _l en] .

name
is a variable name, array name, name of a constant, or function nane.
The name nmust not be the nane of a mmin program subroutine
subprogram or block data subprogram

array_decl arat or
is an array declarator.

char _| en
specifies the length of itens of type character. Wen char_len
appears i mmediately after a name or array_declarator, it overrides any
char_len specified after the word CHARACTER. char_len is one of the
foll ow ng:

0 An unsigned integer constant in the range 1 through 32767,
inclusive.

O An integer constant expression enclosed in parentheses and having
the value 1 through 32767, inclusive.

O An asterisk in parentheses. (See "PARAMETER Statement” in
topic 6.6.)

| Copyright IBM Corp. 1987, 1990
6.4-1

SAA CPI FORTRAN Reference
INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and CHARACTER Type Statements

If char_len is not specified, a value of 1 is assuned.

initial_value
provides an initial value for the variable or array specified by the
i medi at el y-precedi ng nane or array declarator. This occurs just |ike
in the DATA statenent (see page 7.0).

A type statement overrides or confirms inplicit typing, and may specify
di mensi on information and initial values.

The appearance of a variable name, array nane, name of a constant,
external function nane, or statement function in a type statenent
specifies the data type for that nanme for all appearances in the program
unit. A type statenment may confirmthe data type of a specific intrinsic
function name, but it is not required to do so. Appearance of a generic
intrinsic function nane is not sufficient, by itself, to remove the
generic properties fromthe intrinsic function.

Exanpl es of Type Statements

real *8 x_pos(10),y_pos(10)
| ogical first /[.true. [/
character*(*) message_text

| Copyright IBM Corp. 1987, 1990
6.4-2

SAA CPI FORTRAN Reference

IMPLICIT Statement
6.5 | MPLICI T Statenent
o m e e e e e e e e e e e e +
I WS | VNV | 0OS/400 | Os/2 |
o e - oo e m e e e o e 1
pooX 0 X X b X
e +
o e m e e e e e e e mm e e e e e e mmmmm o — =
i
! T fmmmmm e +
| D I
I 1
' ---IMPLICIT----- type_spec--(--range_list--)-------------------------- O
| i i
' e (0 | i +
|
I
|
s
type_spec
specifies a data type and is described on page 6.4.
range

is either a single letter or a range of letters in al phabetic order.
A range of letters has the formletter[1]-letter[2], where letter[1]
is the first letter in the range and letter[2] is the last letter in
the range. Specifying a range of letters has the sane effect as
specifying a list of all letters in that range.

The IMPLICIT statenent changes or confirms default inplicit typing, or,
with the form IMPLICIT NONE specified, voids inplicit typing altogether.
See "How Type Is Determined" in topic 3.2 for a discussion of inplicit

typi ng.

Al'l names that begin with the letter or letters specified by range, and
for which a type is not explicitly specified, are given the type specified
by the i mredi atel y-preceding type_spec. The sane letter may be specified
only once in all the IMPLICIT statements in a program unit.

If the form IMPLICIT NONE is specified, type statenents nust be used to
specify data types. |If the formIMPLICIT NONE is specified, it nust be

the only IMPLICIT statement in a programunit.

An | MPLICIT statenment does not change the data type of an intrinsic
function.

Exanpl e of an IMPLICIT Statenment

inplicit integer (a), conmplex (q, x-2z)

| Copyright IBM Corp. 1987, 1990
65-1

SAA CPI FORTRAN Reference
PARAMETER Statement

6. 6 PARAMETER St at enent

o m e e e e e e e e e e e eeaaa o +

' WS ! VW ! 0S/400 ! 0S/2!

o e - oo e m e e e o e 1

X X X 4 X

e +

o e m e e e e e e e mm e e e e e e mmmmm o — =
i

! oo fmmmmmmm e +

| 0 i

' - - - PARAMETER- - - (----- constant _name-- = --constant_expr----- y--------- O

|

I

|

o e e e e e e e e e e e e e e e e m = =

const ant _nane
is a name called the name of a constant.

const ant _expr
is an arithmetic constant expression, character constant expression
or |logical constant expression

The PARAMETER st atenent specifies names for constants. A nanmed constant
is defined with the value of constant_expr in accordance with the rules
for assignment statenents. See Chapter 8, "Assignnment Statenents"
starting on page 8.0.

I f constant_expr contains the nane of a constant, the nanme nust have been
defined in the sane or a previous PARAMETER st atenent.

The name of a constant mnmust not be defined nore than once in a program
unit.

The name of a constant must not be part of a format specification, and it
must not be used to form part of another constant, such as a conpl ex
constant.

If the data type of the nane of a constant was not specified explicitly,
it is determined inplicitly before the constant is defined (for exanple,
before the possible conversion of the constant expression). After the
constant is defined, the data type of the name cannot be respecified

If the name of a constant of type character has a length specifier of an
asterisk in parentheses, the constant assunes (inherits) the length of its

correspondi ng constant expression in a PARAVETER st at ement

Exanpl es of PARAMETER St at ements

character*6 today

real pi

paranmeter (today = 'Friday')
parameter (pi = 3.14159)

| Copyright IBM Corp. 1987, 1990
6.6-1

SAA CPI FORTRAN Reference
EXTERNAL Statement

6.7 EXTERNAL St at enent

o e e e e e oo +

' WS | VvV | OS/400 | os/ 2 |

o e - oo e m e e e o e 1

i X 0 X X X

B Yy +

o e m e e e e e e e mm e e e e e e mmmmm o — =
i

' ---EXTERNAL---name_| i St----------------- e O

|

I

i

e e e e e e e e e e e e e e e e m o mmmmmm—m = =
name

is the name of an external procedure or block data subprogram

The EXTERNAL statenent identifies a nane as an external procedure so that
the name can be used as an actual argunent.

An external procedure nane nust appear in an EXTERNAL statenent in any
program unit that uses the name as an actual argunent.

If an intrinsic function name appears in an EXTERNAL statenent in a
programunit, the name is the nane of an external procedure. Therefore,

an intrinsic function of the same nane cannot be invoked fromthat program
unit.

Exanpl e of an EXTERNAL Statenment: See page 10.8.5.

| Copyright IBM Corp. 1987, 1990
6.7-1

SAA CPI FORTRAN Reference
INTRINSIC Statement

6.8 I NTRINSI C St at enent

o e e e e e oo +

' WS | VvV | OS/400 | os/ 2 |

o e - oo e m e e e o e 1

i X 0 X X X

B Yy +

o e m e e e e e e e mm e e e e e e mmmmm o — =
i

' ---INTRINSIC---name_|iSt------------mmmmm o O

|

I

i

e e e e e e e e e e e e e e e e m o mmmmmm—m = =
name

is the name of an intrinsic function described in Appendix A,
“Intrinsic Functions."

The INTRINSIC statement identifies a name as an intrinsic function and
permts the specific names of intrinsic functions to be used as actual
argunents.

If an intrinsic function nanme is used as an actual argument in a program
unit, it nust appear in an INTRINSIC statement in that programunit. The
intrinsic function nanes that nust not be used as actual argunents are

those for the follow ng:

O Type conversion: INT, IFI X, |IDINT, HFIX, REAL, FLOAT, SNGL, DREAL
DBLE, CMPLX, DCMPLX, |CHAR, CHAR

O Lexi cal relationships: LGE, LGT, LLE, LL

O Choosing | argest and smal |l est val ues: MAX, MAXO, AMAX1, DMAX1l, AMAX0
MAX1, M N, MNO, AMN1, DM N1, AM NO, M N1

O Bi t-mani pul ation: IOR, | AND, NOT, |EOR, |SHFT, BTEST, |IBSET, |BCLR

A generic function naned in an | NTRINSIC statement keeps its generic
property.

A name nust not appear in both an EXTERNAL and an INTRINSIC statement in
the same program unit.

Exanpl e of an | NTRINSI C St at enment

intrinsic sin

¢ Pass intrinsic function name to subroutine
call doit(0.5,sin,x)

| Copyright IBM Corp. 1987, 1990
6.8-1

SAA CPI FORTRAN Reference
SAVE Statement

6.9 SAVE St at enent

S +

' WS | VvV | OS/400 | os/ 2 |

o e - oo e m e e e o e 1

i X X X X

L e +

o e m e e e e e e e mm e e e e e e mmmmm o — =

ST Y e i g

Do RERREEEEEEEEE + !
| -

+
h
.
\
\
I
<
Q
=
[
o
l(‘D
]
-
|
,
\
.
\
.
\
.
\
\
\
\
.
\
|
+

vari abl e_nane

array_nane

common_bl ock_nane
is the nane of a variable, array, or named conmon bl ock. Dummy
argument names, procedure nanmes, and the names of variables and arrays
in a conmon block are not permtted.

The SAVE statenment specifies the names of variables, arrays, and named
common bl ocks whose definition status is to be retained after control

returns fromthe subprogramin which the variables, arrays, and nanmed

common bl ocks are defined.

Note: In Systems Application Architecture FORTRAN, the SAVE statenent is
synt ax- checked during conpilation but has no effect during execution
because the definition status of variables, arrays, and named conmon

bl ocks is always retained.

A SAVE statement without a list is treated as though it contains the nanmes
of all allowable items in the programunit.

Wthin a function or subroutine subprogram a variable or array whose nane
is specified in a SAVE statenent does not beconme undefined as a result of
the execution of a RETURN or END statenent in the subprogram However, a
variable or array in a comon bl ock may becone undefined or redefined in
anot her programunit, even though the common block is specified in a SAVE
st at enent .

| Copyright IBM Corp. 1987, 1990
69-1

SAA CPI FORTRAN Reference
Chapter 7. DATA Statement

7.0 Chapter 7. DATA Statenent

o m e e e e e e e e e e e eeaaa o +

I WS | VvV | 0S/400 | 0OSs/2

o e - oo e m e e e o e 1

CooX X X X

e +

o e m e e e e e e e mm e e e e e e mmmmm o — =
i

! R L +

! O oo, -t !

' ---DATA----- data_nanme_list--/--initial _value_list--/----------------- O

|

I

|

o e e e e e e e e e e e e e e e e m = =
dat a_nane

is any of the follow ng:

O A vari abl e name

O An array name

O An array element name in which the subscript expressions are
i nteger constant expressions

O A character substring name in which the substring expressions are
i nteger constant expressions

O An inplied-DO Iist

initial_value
has the form

—————————————————— constant---------ccmcmmnn i e e e e e -]
+--r--*--+ +--constant_name--+

is a nonzero, unsigned, integer constant or the nane of such a
constant. The formr*constant or r*constant_name is equivalent to
r successive appearances of the constant or name of constant.

The DATA statenment is a nonexecutable statement that provides initia
val ues for variables, array elenments, and character substrings

Each data_name_list nust specify the sanme number of items as its
corresponding initial_value_list. There is a one-to-one correspondence
between the itenms in these two |ists such that the first data_nane
corresponds to the first initial_value, the second data_name corresponds
to the second initial_value, and so forth. This correspondence
establishes the initial value of each data_nane.

Specifying an array name as a data_nanme is the same as specifying a |list
of all the elenments in the array in the order they are stored

The data type of each data_nanme and the data type of its corresponding
initial _value nmust agree if either is of type logical or character. For

| Copyright IBM Corp. 1987, 1990
70-1

SAA CPI FORTRAN Reference
Chapter 7. DATA Statement

type character, definition proceeds according to the rules for character
assignnment statenents. (See "Character Assignnent Statenment" in
topic 8.4.) |If a data_name is of type integer, real, or conplex, its
corresponding initial_value need not agree in type, although it nust be
one of the types in that group (integer, real, or conmplex); if the types
do not agree, the initial_value is converted

To provide an initial value for a variable, array element, or character
substring in a naned common bl ock, the DATA statenent nust be in a bl ock

dat a subprogram

A DATA statenent cannot provide an initial value for

O

A dummy argunmen

O A variable, array elenent, or character substring in a blank commo
bl ock, including a variable, array elenment, or character substring
that is associated with a variable, array element, or character
substring in a blank conmon bl ock

O A variable in a function subprogram whose name is the sane as that o

the function subprogram or an entry in the function subprogram

A variable, array element, or character substring nust not be initialized
nmore than once in an executable program |If two or nore variables, array
el ements, or character substrings are associated, only one may be
initialized in a DATA statement.

An inplied-DO list nmay be used in a DATA statement to initialize the
elements of an array. |Its formis

e +
| I
| I
' ---(--do_object_list--,--variable_name-- = -------------------------- |
i i
| ----integer_exprl--,--integer_expr2------------------------) EEEE R O i
' +-,--integer_expr3-+ |
I I
| I
i i
T T I NS +
do_obj ect

is an array element name, character substring nane, or inplied-DO

list

vari abl e_nane
is the name of an | NTEGER*4 variable called the inplied-DO vari abl e.

i nteger_exprl

i nteger _expr2

i nteger _expr3
are each an | NTEGER*4 constant expression, except that the expression
may contain inplied-DO variables of other inplied-DO lists that have
this inplied-DO list within their ranges

The range of an inplied-DO list is the list do_object_list. The iteration
count and the values of the inplied-DO variable are established from
integer_exprl, integer_expr2, and integer_expr3, the sane as for a DO
statement, except that the iteration count nust be positive. (See
"Execution of a DO Statement” in topic 9.7.3.) \Wien the inplied-DO |ist
is executed, the items in the do_object_list are specified once for each
iteration of the inplied-DO list, with the appropriate substitution of

| Copyright IBM Corp. 1987, 1990
7.0-2

SAA CPI FORTRAN Reference
Chapter 7. DATA Statement

val ues for any occurrence of the inplied-DO vari abl e.

Each subscript expression in the do_object_list rmust be an integer
constant expression, except that the expression may contain inplied-DO
variables of inplied-DO lists that have the subscript expression within
their ranges.

Exanpl es of DATA Statements

integer z(100), even_odd(0:9)
logical first_tinme
dat a first _time / .true. /
dat a z [/ 100* O /
C Inplied-DO |ist
data (even_odd(j),j=0,8,2) / 5* 0
1

/
+ ,(even_odd(j),j=1,9,2) /| 5 * /

| Copyright IBM Corp. 1987, 1990
7.0-3

SAA CPI FORTRAN Reference
Chapter 8. Assignment Statements

8.0 Chapter 8. Assignnment Statenents
Assi gnment statements are executable statements that assign values to
variables, array elenments, or character substrings.

Thi s chapter describes the four kinds of assignment statenents:

O Arithmetic assignment statement

O Logi cal assignnent statenent

O Statement | abel (ASSIGN) assignnent statement
O Character assignnent statenents

Subt opi cs

8.1 Arithmetic Assignnent Statenent

8.2 Logical Assignment Statenent

8.3 Statenment Label Assignment (ASSIGN) Statenent
8.4 Character Assignnent Statement

| Copyright IBM Corp. 1987, 1990
8.0-1

SAA CPI FORTRAN Reference
Arithmetic Assignment Statement

8.1 Arithmetic Assignnent Statenent

o m e e e e e e e e e e e e +

I WS | VvV | 0OS/400 | OS/2 |

o e - oo e m e e e o e 1

X X X 4 X

e +

o e m e e e e e e e mm e e e e e e mmmmm o — =
------ vari abl e_name---------- = --arith_expr-------------------------]

+--array_el enent _nane- -+

vari abl e_nane

array_el ement _nane
is the nanme of a variable or array elenent of type integer, real, or
conpl ex.

arith_expr
is an arithmetic expression.

The arithmetic assignment statement evaluates arith_expr, converts the
resulting value to the type of the variable or the array el ement, and

assigns that value to the variable or array el enent.

Exanpl es of Arithmetic Assignment Statenents

esq = p**2 + nt*2
root(1l) = (-b + sqgrt(b**2 - 4.0*a*c))/(2.0*a)

| Copyright IBM Corp. 1987, 1990
81-1

SAA CPI FORTRAN Reference
Logical Assignment Statement

8.2 Logical Assignment Statenent

o m e e e e e e e e e e e e +

I WS | VvV | 0S/400 | Os/2

o e - oo e m e e e o e 1

X X X 4 X

e +

R e e +

i

------ vari abl e_nanme---------- = --logical _expr-----------------------] |

+--array_el enent _nane- -+

vari abl e_nane
array_el ement _nane
is the name of a variable or array element of type |ogical

| ogi cal _expr
is a |logical expression.

The | ogical assignment statenment eval uates | ogical _expr and assigns the
resulting value to the variable or the array el ement

Exanpl e of a Logical Assignnent Statenent

| ogi cal inside

real r,rmn, rmax
inside = (r .ge. rmn) .and. (r .le. rmx)

| Copyright IBM Corp. 1987, 1990
82-1

SAA CPI FORTRAN Reference
Statement Label Assignment (ASSIGN) Statement

8.3 Statenment Label Assignment (ASSIGN) Statenent

o m e e e e e e e e e e e e +
I WS | VNV | 0OS/400 | Os/2 |
o e - oo e m e e e o e 1
pooX 0 X X b X
e +
o e m e e e e e e e mm e e e e e e mmmmm o — =
i
' ---ASSIGN---stnt_| abel ---TO---variable_name-------------------------- O
|
I
|
e e e e e e e e e e e e e e e e m o mmmmmm—m = =
stnmt _| abel
specifies the statement |abel of an executable statenment or a FORMAT
st at enent .

vari abl e_nane
is the name of an | NTEGER*4 vari abl e.

The ASSI GN statenent assigns a statenment |abel to the variable.

A variable nust be defined with a statement |abel value when referenced in
an assigned GO TO statenment or as a format identifier in an input/output
statenent. \hile defined with a statenent | abel value, the variable nust
not be referenced in any other way.

Use of an ASSICN statement is the only way to define a variable with a
statenent |abel val ue.

An integer variable defined with a statenent |abel value may be redefined
by anot her ASSIGN statement or with an integer val ue.

Exanpl e of a Statenment Label Assignment (ASSIGN) Statenment: See "Exanple
of an Assigned GO TO Statenment" in topic 9.3.

| Copyright IBM Corp. 1987, 1990
83-1

SAA CPI FORTRAN Reference
Character Assignment Statement

8.4 Character Assignnent Statenment

o m e e e e e e e e e e e e +

I WS | VvV | 0OS/400 | OS/2 |

o e - oo e m e e e o e 1

X X X 4 X

e +

o e m e e e e e e e mm e e e e e e mmmmm o — =
------ vari abl e_nanme---------- = --char_expr--------------------------]

+--array_el ement _nane- - |
+--substring_nanme------ +

vari abl e_nane

array_el ement _nane

substring_nane
is the nane of a character variable, character array element, or
character substring.

char _expr
is a character expression.

The character assignnent statement eval uates char_expr and assigns the
resulting value to the character variable, character array element, or
character substring.

None of the character positions being defined in the character variable,
character array elenment, or character substring may be referenced by the
character expression.

If the length of the character variable, character array elenent, or
character substring is greater than the length of the character
expression, the character expression is extended to the right with bl anks
until the lengths are equal, and then assigned. |f the length of the
character variable, character array element, or character substring is

| ess, the character expression is truncated on the right to match the

Il ength of the character variable, character array el ement, or character
substring, and then assigned

Only as nuch of the character expression need be defined as is necessary
to define the character variable, character array element, or character
substring. For exanple:

character Scott*4, Dick*8
Scott = Dick

This assignnment of Dick to Scott requires that the substring Dick(1:4) be
defined. The rest of Dick, Dick(5:8), does not have to be defined.

If substring_name is specified, the character expression is assigned only
to the character substring identified by that substring_name. The

definition status of other character substrings does not change.

Exanmpl es of Character Assignnent Statements

| Copyright IBM Corp. 1987, 1990
84-1

SAA CPI FORTRAN Reference
Character Assignment Statement

character*80 line, ch*l, seq*8

ch = line(1:1)
seq = line(73:80)

| Copyright IBM Corp. 1987, 1990
8.4-2

SAA CPI FORTRAN Reference

Chapter 9. Control Statements
9.0 Chapter 9. Control Statenents
Control statenments are executable statenments that control the execution
sequence of a program

This chapter describes all the control statements except for CALL and
RETURN (which are described in Chapter 10, "Program Units and
Procedures"). The control statements described in this chapter are:

Unconditional GO T
Computed GO T
Assigned GO T
Arithmetic |

Logi cal |

Block IF, ELSE IF, ELSE, and END I F (grouped in an |IF construct
D

CONTI NU

STO

PAUS

END

Ooooooooood

n
c

=3
—~

opi cs

Uncondi ti onal GO TO St at enent
Comput ed GO TO St at ement

Assi gned GO TO St at enent
Arithnetic | F Statenent
Logical |F Statenent

| F Construct--Block |F, ELSE IF, ELSE, and END | F Statenents
DO St at enent

CONTI NUE St at enent

STOP St at enent

.10 PAUSE St at enent

.11 END St at enment

[N

© © © © © © O © © © ©
© 0O ~NO O WDN

| Copyright IBM Corp. 1987, 1990
9.0-1

SAA CPI FORTRAN Reference
Unconditional GO TO Statement

9.1 Unconditional GO TO Statenent

o m e e e e e e e e e e e e +

I WS | VNV | 0OS/400 | Os/2 |

o e - oo e m e e e o e 1

pooX 0 X X b X

e +

o e m e e e e e e e mm e e e e e e mmmmm o — =
i

' ---G0--TO--stnt_label -----------mmm e O

|

I

|

e e e e e e e e e e e e e e e e m o mmmmmm—m = =
stnmt _| abel

is the statenent |abel of an executable statenent.

The unconditional GO TO statenent transfers control to the statenent
identified by stnt_|abel.

| Copyright IBM Corp. 1987, 1990
9.1-1

SAA CPI FORTRAN Reference
Computed GO TO Statement

9.2 Conputed GO TO St at ement

o m e e e e e e e e e e e e +
I WS | VNV | 0OS/400 | Os/2 |
o e - oo e m e e e o e 1
i X 0 X X X
e +
L e e R +
I I
| I
' ---GO--TO--(--stnt_l abel _list--)----------- integer_expr-------------- O |
: LR :
i i
i i
e +
stnmt _| abel

is the statement | abel of an executable statement. The same statement

| abel may appear nore than once in stnt_label _Iist.

i nt eger _expr
is an integer expression.

The computed GO TO statenent eval uates integer_expr, uses the resulting
value as an index into stnt_|label _|ist, and transfers control to the
statenent whose statement |abel is identified by that index. For exanple,
if the value of integer_expr is 4, control transfers to the statenent
whose statement label is fourth in the stm _Ilabel _list.

If the value of integer_expr is less than one or greater than the nunber
of statenent |labels in the list, execution of the GO TO statement has no

effect (like a CONTINUE statenent).

Exanpl e of a Conputed GO TO St at enent

integer next

go to (100, 200) next
10 print *,'Execution transfers here if NEXT does not equal 1 or 2'

100 print *,'Execution transfers here if NEXT = 1'

200 print *,'Execution transfers here if NEXT = 2'

| Copyright IBM Corp. 1987, 1990
9.2-1

SAA CPI FORTRAN Reference
Assigned GO TO Statement

9.3 Assigned GO TO St at enment

o m e e e e e e e e e e e e +

I WS | VvV | 0OS/400 | OS/2 |

o e - oo e m e e e o e 1

X X X 4 X

e +

o e m e e e e e e e mm e e e e e e mmmmm o — =
i

' ---GO--TO -variable_name-----------------““----- - O

| EEEEEE T (--stnmt_label _list--)--+

! +-, -+

|

|

o e e e e e e e e e e e e e e e e m = =

vari abl e_nane
is a variable name of type | NTEGER*4.

stnt _| abel
is the statenent | abel of an executable statement. The sanme statenent
| abel may appear nore than once in stnt_|abel |ist.

The assigned GO TO statenment transfers control to the statenent identified

by a statement |abel. At the time the assigned GO TO statenent is
executed, the variable specified by variable_nanme nust be defined with the
value of a statenent label. This definition must be nade with an ASSI GN

statement in the same programunit as the assigned GO TO statenent.
If stnt_label _list is present, the statenent |abel assigned to the
vari abl e specified by variabl e_name nust be one of the statement l|abels in

the list.

Exanpl e of an Assigned GO TO St at ement

integer return_| abel

¢ Assign the return | abel and "call" the |ocal procedure

assign 100 to return_Il abel
goto 9000

100 continue

9000 continue
c A "local" procedure.

goto return_| abel

| Copyright IBM Corp. 1987, 1990
9.3-1

SAA CPI FORTRAN Reference
Arithmetic IF Statement

9.4 Arithnmetic | F Statenment

o m e e e e e e e e e e e e +
I WS | VvV | 0OS/400 ; OSs/2

o e - oo e m e e e o e 1

i X X X X

e +

o e m e e e e e e e mm e e e e e e mmmmm o — =
i

d --lF--(--arith_expr--)--stm _I|abel 1--,--stnt_| abel 2--,--stnt_| abel 3-- O

|

I

i

e e e e e e e e e e e e e e e e m o mmmmmm—m = =

arith_expr
is an integer or real expression.

st _| abel 1

stnt _| abel 2

stnt _| abel 3
are statenment |abels of executable statements. The sane statenent
| abel may appear nore than once anong the three statement |abels.

The arithnetic |F statement evaluates arith_expr and transfers control to
the statenent identified by stnt_|abell, stnt_label2, or stnt_Iabel 3,
dependi ng on whether the value of arith_expr is less than zero, zero, or
greater than zero, respectively.

On OS/ 400 and OS/ 2, the value of arith_expr nust not be a NaN (not a
nunber) .

Exanpl e of an Arithmetic | F Statenent

if (k-100) 10, 20, 30
10 print *,"Kis less than 100."'

go to 40
20 print *,'K equals 100."'

go to 40
30 print *,'Kis greater than 100.'
40 conti nue

| Copyright IBM Corp. 1987, 1990
94-1

SAA CPI FORTRAN Reference
Logical IF Statement

9.5 Logical IF Statenment

o m e e e e e e e e e e e e +

I WS | VvV | 0OS/400 | OS/2 |

o e - oo e m e e e o e 1

X X X 4 X

e +

o e m e e e e e e e mm e e e e e e mmmmm o — =
i

' ---lF---(---logical _expr---)---Stm-------------mmm oo O

|

|

|

e e e e e e e e e e e e e e e e m o mmmmmm—m = =

| ogi cal _expr
is a logical expression.

st
is any unl abel ed executabl e statement except DO, block IF, ELSE IF,
ELSE, END |IF, END, or another logical IF.

The logical |IF statenment eval uates |ogical _expr and uses the resulting
value to determ ne whether stnt is processed. |f the value of

| ogi cal _expr is true, stnt is executed. |f the value of |ogical_expr is
false, stnt is not executed and the |F statement has no effect (like a
CONTI NUE st atenent).

Execution of a function reference in |ogical_expr may change the val ues of
data itenms in stnt.

Exanpl e of a Logical |IF Statenent

if (err.ne.0) call error(err)

| Copyright IBM Corp. 1987, 1990
95-1

SAA CPI FORTRAN Reference
IF Construct--Block IF, ELSE IF, ELSE, and END IF Statements

9.6 IF Construct--Block IF, ELSE |IF, ELSE, and END | F Statenents

S +
' WS | VvV | OS/400 | os/ 2 |
o e - oo e m e e e o e 1
i X X X X
L e +
I L I R +

I'F (logical _expr) THEN

[st nmt _bl ock]

[ELSE I F (1 ogical _expr) THEN

[stmt _block]]...

[ELSE

[stmt _bl ock]]

END | F

| ogi cal _expr
is a logical expression.

stmt _bl ock
is a statenent block consisting of zero or nore executable statenents.

The I F construct controls the execution sequence. It is made up of a

bl ock I'F statement, an END | F statenment, and, optionally, ELSE IF, ELSE,
and ot her executable statenments. The box above shows the statements in an
I'F construct in their required sequence.

The | ogical expressions in an |F construct are evaluated in the order of
their appearance until a true value, an ELSE statenent, or an END IF
statenment is found:

O If a true value or an ELSE statenent is found, the statement bloc
i medi ately followi ng is executed, and the execution of the IF
construct is conplete. The |logical expressions in any remaining ELSE
IF statements of the IF construct are not eval uated.

O If an END | F statenment is found, no statenent blocks execute, and th
execution of the IF construct is conplete.

Transfer of control into an | F construct fromoutside it is not permtted.
Transfer of control within an IF construct is permitted within statement
bl ocks, but is not permtted between statenent blocks or to an ELSE | F or
ELSE st at enent .

I F constructs may be nested, that is, any of the statenment bl ocks may
contain I F constructs.

Exanpl e of an | F Construct

| Copyright IBM Corp. 1987, 1990
96-1

SAA CPI FORTRAN Reference
IF Construct--Block IF, ELSE IF, ELSE, and END IF Statements

c Get a record (containing a command) fromthe term na
100 continue

¢ Process the commnd
if (cmd .eq. 'retry') then
if (limt .gt. five) then

c Print retry limt exceeded
call stop
el se
call retry
end if
else if (cnd .eq. 'stop') then
call stop

else if (cmd .eq. '"abort') then
call abort

el se
go to 100

end if

| Copyright IBM Corp. 1987, 1990
9.6-2

9.7 DO Statement

o m e e e e e e e e e e e e +
I WS | VvV | 0OS/400 ; OSs/2
o e - oo e m e e e o e 1
i X X X X
e +
e,
i
d ---DO--stnt _I| abel ------- vari abl e_name-- = --arith_exprl--,--arith_expr2
! +-, -+
|
|
i
e mmmmm =
stnmt _| abel
is the statenent | abel of the term nal statement, which is the

SAA CPI FORTRAN Reference
DO Statement

execut abl e statenent at the end of the DO I oop.

vari abl e_nane
the name of an integer or real variable called the DO vari abl e.

is

arith_exprl
arith_expr2
arith_expr3
e each an integer or real expression.

ar

The DO statenent specifies a |oop,

called a DO | oop.

The term nal statenent nust follow the DO statenent and nmust not be any of
the followi ng statements: uncondit
IF, block IF, ELSE IF, ELSE, END |IF, RETURN, STOP, END, or DO.

Subt opi cs

© © O © O O ©

7.

N NN NN N

1

N o g b~ wN

Range of a DO Loop

Active and | nactive DO Loops
Execution of a DO Statenent
Loop Control Processing
Executi on of the Range

Term nal Statenent Execution
I ncrementati on Processing

ional GO TO, assigned GO TO, arithmetic

| Copyright IBM Corp. 1987, 1990
9.7-1

+-,--arith_expr3-+

9.7.

The
t he
t he

SAA CPI FORTRAN Reference
Range of a DO Loop

1 Range of a DO Loop

range of a DO | oop consists of all the executable statements follow ng

DO statenment, up to and including the term nal statement. Concerning
range:
If a DO statenent appears within the range of a DO loop (that is, i

nested), the range of the nested DO | oop nust be entirely within the
range of the outer DO | oop.

DO | oops may share a term nal statenent
If a DO statenent appears within a statement block of an | F construct
the range of the DO | oop nmust be contained entirely within that

stat ement bl ock.

If an IF construct appears within the range of a DO |oop, no part o
the construct may appear outside the range.

Transfer of control into the range of a DO |oop from outside the rang
is not permtted.

Transfer of control to a shared term nal statement may only be don
fromthe innernost sharing DO | oop.

| Copyright IBM Corp. 1987, 1990
9.71-1

SAA CPI FORTRAN Reference
Active and Inactive DO Loops

9.7.2 Active and Inactive DO Loops

A DO loop is either active or inactive. |Initially inactive, a DO | oop
becones active only when its DO statement is executed. Once active, the
DO | oop becones inactive only when:

O Its iteration count becones zero

O A RETURN statement is executed within the range of the DO I oop

O Control is transferred to a statement in the same program unit bu
out side the range of the DO | oop.

O A subroutine invoked fromwi thin the DO | oop returns, via an alternat
return specifier, to a statenent that is outside the range of the DO
| oop.

O A STOP statement is executed or execution is termnated for any othe
reason.

When a DO | oop becomes inactive, the DO variable keeps the |ast val ue
assigned to it.

| Copyright IBM Corp. 1987, 1990
9.72-1

SAA CPI FORTRAN Reference
Execution of a DO Statement

9.7.3 Execution of a DO Statenent

1. The initial parameter, n{1l], the term nal paraneter, n{2], and the
incrementation parameter, n{3] are established by eval uating
arith_exprl, arith_expr2, and arith_expr3, respectively. Evaluation
includes, if necessary, conversion to the type of the DO variable. |If
arith_expr3 is not specified, n{3] has a value of 1. n[3] nust not
have a val ue of zero.

2. The DO variable becomes defined with the value of the initial
paraneter (n{1]).

3. The iteration count is established and is the value of the expression:
MAX (INT ((n[2] - n{1] + n{3]) / n(3]), O)
Note that the iteration count is O whenever:

m1l] > m2] and n{ 3] > 0, or
mM 1] <nm2] and n{3] <O

At the conpletion of execution of the DO statenent, |oop control
processi ng begins.

| Copyright IBM Corp. 1987, 1990
9.73-1

SAA CPI FORTRAN Reference
Loop Control Processing

9.7.4 Loop Control Processing

Loop control processing determnes if further execution of the range of

the DO loop is required. The iteration count is tested. |If the count is
not zero, execution of the first statement in the range of the DO | oop
begins. If the iteration count is zero, the DO | oop beconmes inactive.

If, as a result, all of the DO |oops sharing the term nal statenent of
this DO | oop are inactive, normal execution continues with the execution
of the next executable statement followi ng the term nal statenent.
However, if some of the DO | oops sharing the term nal statement are
active, execution continues with incrementation processing.

| Copyright IBM Corp. 1987, 1990
9.74-1

SAA CPI FORTRAN Reference
Execution of the Range

9.7.5 Execution of the Range

Statenments in the range of the DO | oop are executed until reaching the
term nal statenment. Except by incrementation processing, the DO variable
may neither be redefined nor beconme undefined during execution of the
range of the DO | oop.

| Copyright IBM Corp. 1987, 1990
9.75-1

SAA CPI FORTRAN Reference
Terminal Statement Execution

9.7.6 Termi nal Statenent Execution

Execution of the term nal statement occurs as a result of the nornal
execution sequence, or as a result of transfer of control, subject to the
restriction that transfer of control into the range of a DO | oop from
outside the range is not permitted. Unless execution of the term nal
statement results in a transfer of control, execution then continues with
incrementation processing.

| Copyright IBM Corp. 1987, 1990
9.76-1

SAA CPI FORTRAN Reference
Incrementation Processing
9.7.7 Incrementation Processing
1. The DO variable, the iteration count, and the incrementation paraneter
(n{3]) of the active DO | oop whose DO statement was nobst recently
executed, are selected for processing.
2. The value of the DO variable is incremented by the value of n{3].

3. The iteration count is decrenented by 1.

4. Execution continues with loop control processing of the sane DO | oop
whose iteration count was decrenented.

Exanpl es of DO St atenents

do 20i =2, 5
earliest(i) = 0.0
do 10 j =1, i-1
if (network(j,i) .ne. 0.0)
X earliest(i) = max(network(j,i)+earliest(j), earliest(i))
10 conti nue

20 continue

| Copyright IBM Corp. 1987, 1990
9.7.7-1

SAA CPI FORTRAN Reference

CONTINUE Statement
9.8 CONTI NUE St at enent
o m e e e e e e e e e e e e +
' WS | VvV | OS/400 | os/ 2 |
o e - oo e m e e e o e 1
i X X X X
e +
de-eeeeeeeeeeee-ceeeemmmmmmmemememmemmemmmmmem-msmmemmmmmmmmmmmmmeeememeeeeeeeeeeeo———=—oaa
i
d B 60\ I I\ U i d
I
|
i
e e e e e e e e e e e e e e e e e e e mmmmm e mm e mm e e m e m e m e m e m o mmom e m e e e m o mmm e e mm o mm o mm == m = =

The CONTI NUE st atenent has no effect.

| Copyright IBM Corp. 1987, 1990
9.8-1

SAA CPI FORTRAN Reference
STOP Statement

9.9 STOP St atenent

S +

' WS | VvV | OS/400 | os/ 2 |

o e - oo e m e e e o e 1

i X X X X

L e +

o e m e e e e e e e mm e e e e e e mmmmm o — =
S O i e e I g

+--char_constant--|
+--digit_string---+

char _const ant
is a character constant of 1 through 72 characters.

digit_string
is a string of 1 through 5 digits.

The STOP statenment stops the execution of a program and displ ays
char_constant or digit_string, if specified, to the user.

Exanpl es of STOP Statenents

STOP ' Abnormal Term nation’
STOP 15

| Copyright IBM Corp. 1987, 1990
99-1

SAA CPI FORTRAN Reference
PAUSE Statement

9. 10 PAUSE St at enment

S +

' WS | VvV | OS/400 | os/ 2 |

o e - oo e m e e e o e 1

i X X X X

L e +

o e m e e e e e e e mm e e e e e e mmmmm o — =
B o B S S e i g

+--char _constant--|
+--digit_string---+

char _const ant
is a character constant of 1 through 72 characters.

digit_string
is a string of 1 through 5 digits.

The PAUSE st atenent suspends the execution of a program and di splays
char_constant or digit_string, if specified, to the user. \When the user
i ntervenes, execution resunes as though a CONTI NUE statenment were

execut ed.

Exanpl es of PAUSE St atenments

PAUSE 'Insert a diskette into the default drive.'
PAUSE 10

| Copyright IBM Corp. 1987, 1990
9.10-1

SAA CPI FORTRAN Reference
END Statement

9.11 END St at enent

o m e e e e e e e e e e e e +
I WS | VNV | 0OS/400 | Os/2 |

o e - oo e m e e e o e 1

pooX 0 X X b X

e +

o e m e e e e e e e mm e e e e e e mmmmm o — =
i

' e =\ D e e O

|

I

|

e e e e e e e e e e e e e e e e m o mmmmmm—m = =
The END statenent is the final statement in a programunit. It is the

only required statenent.

The END statenment in a main programterm nates execution of the executable
program The END statement in a function or subroutine subprogram has the
sane effect as a RETURN statenent.

| Copyright IBM Corp. 1987, 1990
9.11-1

SAA CPI FORTRAN Reference
Chapter 10. Program Units and Procedures

10. 0 Chapter 10. Program Units and Procedures
Thi s chapter describes:

O Rel ati onshi ps ampbng program units and procedure

O Functi ons and subroutine

| Ar gunment

O The PROGRAM FUNCTI ON, statenent function, SUBROUTI NE, CALL,
RETURN, and BLOCK DATA st atenents.

Subt opi cs

10.1 Rel ationshi ps among Program Units and Procedures

10. 2 PROGRAM St at emrent - - Mai n Program

10. 3 Functions

10. 4 SUBROUTI NE St at enent

10.5 CALL Statenment

10. 6 ENTRY St at enent

10. 7 RETURN St at enent

10. 8 Argunents

10. 9 BLOCK DATA Statement--Bl ock Data Subprogram

| Copyright IBM Corp. 1987, 1990
10.0-1

ENTRY

SAA CPI FORTRAN Reference
Relationships among Program Units and Procedures

10. 1 Rel ati onshi ps anong Program Units and Procedures

A programunit is a sequence of statements and optional conment |ines,
with the final statenent being an END statement. An executable progranmis
a collection of programunits consisting of one main program and zero or
nmor e subprograns.

Programunit relationships are illustrated in Figure 1.

A procedure may be invoked by a programunit to perform a particul ar
activity. When a procedure reference is nade, the referenced procedure is
execut ed.

Procedure rel ationships are illustrated in Figure 2.

Recursion is not permitted. That is, a programunit nust not invoke
itself, either directly or indirectly (via a programunit that it
i nvokes) .

Mai n Program
(may start with a !
PROGRAM st at ement) Fo oo +

Procedure Bl ock data subprogram
subpr ogram (starts with a
H BLOCK DATA st at enent)

Function subprogram
(starts with a
FUNCTI ON st at enent)

Subroutine subprogram
(starts with a
SUBROUTI NE st at enent)

Figure 1. Program Unit Rel ationships

o e e e e e e e e e e e e e e e e m = =
|

|

|

' Procedure

I 1

1 1

! L e L +

I 1 1 1

| 1 1 1

d Intrinsic St at enent Ext er nal

d function function procedure

| i

! B +

| 1 I

I 1 1

' Ext ernal function or Subroutine or
' function subprogram subroutine subprogram
|

|

|

|

|

|

(starts with a
FUNCTI ON st at ement)

(starts with a
SUBROUTI NE st at ement)

| Copyright IBM Corp. 1987, 1990
10.1-1

SAA CPI FORTRAN Reference
Relationships among Program Units and Procedures

Figure 2. Procedure Rel ationships

| Copyright IBM Corp. 1987, 1990
10.1-2

SAA CPI FORTRAN Reference
PROGRAM Statement--Main Program

10. 2 PROGRAM St at ement - - Mai n Program

S +

' WS | VvV | OS/400 | os/ 2 |

o e - oo e m e e e o e 1

i X X X X

L e +

o e m e e e e e e e mm e e e e e e mmmmm o — =
i

' === PROGRAM - - NaAIME- - = === === == m oo o oo oo e e oo O

|

I

i

e e e e e e e e e e e e e e e e m o mmmmmm—m = =
name

is the nane of a main program

The PROGRAM st atement specifies that a programunit is a main program
The PROGRAM statement is optional. A main progran is the program unit
that receives control fromthe system when the executable programis
invoked at run tine. A main program may contain any statement except
BLOCK DATA, FUNCTI ON, SUBROUTI NE, ENTRY, or RETURN.

Exanpl e of a PROGRAM St at ement

PROGRAM SCALE

| Copyright IBM Corp. 1987, 1990
10.2-1

SAA CPI FORTRAN Reference
Functions

10. 3 Functions

A function is a procedure that is invoked by its nane or one of its entry
nanes in a function reference and that returns a value to the point of
reference. The three kinds of functions are intrinsic functions (see
Appendi x A, "Intrinsic Functions"), statenent functions, and external
functions (or function subprograns).

Subt opi cs

10.3.1 Function Reference

10.3.2 Statenent Function Statenment

10. 3.3 FUNCTI ON St at enent - - Functi on Subprogram (External Function)

| Copyright IBM Corp. 1987, 1990
103-1

SAA CPI FORTRAN Reference
Function Reference

10. 3.1 Function Reference

A function reference is used as a primary in an expression to invoke a
function. The formof a function reference is:

+
h
!
QL
o
—
o
2
|
QL
=
«Q
c
S
=
|
%]
—_
!
!
+

nanme
is the name of an external function, an entry in an external function,
a statenment function, or an intrinsic function.

act ual _ar gument
is an actual argunment, described on page 10. 8.

Execution of a function reference results in the follow ng:

1. Actual argunents that are expressions are eval uated.

2. Actual argunents are associated with their correspondi ng dunmny
argunents.

3. The referenced function is executed.

4. The value of the function (called the function value) is available to
the referencing expression.

Execution of a function reference nust not alter the value of any other
data itemw thin the statement in which the function reference appears.
However, execution of a function reference in the expression of a |ogical
I F statement is permitted to affect data itens in the statenent that is
executed when the value of the expression is true.

See "Exanmpl es of Statement Function Statements"” in topic 10.3.2 and
"Exanpl e of a FUNCTION Statement” in topic 10.3.3 for exanples of function
references.

| Copyright IBM Corp. 1987, 1990
103.1-1

SAA CPI FORTRAN Reference
Statement Function Statement

10. 3.2 Statement Function Statement

o m e e e e e e e e e e e eeaaa o +
I WS | VNV | 0OS/400] OS/2 |

o e - oo e m e e e o e 1

i X X X X

e +

o e m e e e e e e e mm e e e e e e mmmmm o — =
i

' S--NAME- - (----- - e e m oo)-- = --eXpr------------------ O

! +--dumy_argument _list--+

|

I

i

o e e e e e e e e e e e e e e e e m = =
name

is the name of this statenment function.

dumy _ar gunment
is a statement function dummy argunent. See page 10.8 for a
description of dummy argunents.

expr
is an expression.

A statement function is a single-statenment function that is internal to
the programunit in which it is defined. It is defined by a statenent
function statenent and i nvoked by a function reference.

name determ nes the data type of the value returned fromthe statenment
function. |If the data type of name does not match that of expr, the value

of expr is converted to the type of nane.

An external function reference in expr nmust not cause a dumy_argunent of
the statenent function to become undefined or redefined.

The nanme of a statement function of type character nust not have a |l ength
specifier of an asterisk in parentheses.

Exanpl es of Statenment Function Statements

parameter (pi = 3.14159)
real area,circumr,radius
C Define statenent functions AREA and ClI RCUM
area(r) = pi * (r**2)
circum(r) =2 * pi *r

C Reference the statenent functions.
print *,'The area is: ', area(radius)
print *,'The circunference is: ',circumradius)

| Copyright IBM Corp. 1987, 1990
103.2-1

SAA CPI FORTRAN Reference
FUNCTION Statement--Function Subprogram (External Function)

10. 3. 3 FUNCTI ON St at ement - - Functi on Subprogram (External Function)

o m e e e e e e e e e e e eeaaa o +

I WS | VNV | 0OS/400] OS/2 |

o e - oo e m e e e o e 1

i X X X X

e +

o m e e e e e e +
I I
| I
R FUNCTI ON- - name--(--------=---=---=-------------)------- O |
! +--type--+ +--dumy_argument _list--+ !
i i
i i
o m m e m e mem e — o +
type

explicitly specifies the data type of the value that the function
subprogram returns. type nay be | NTEGER, REAL, DOUBLE PRECI SI ON,
COWPLEX, LOGI CAL, or CHARACTER| *char_l en], where char_len is the

Il ength specification of the result of the character function.

char_l en may have any of the forns permitted in a CHARACTER type
statenment (see page 6.4), except that an integer constant expression
must not include the nanme of a constant. The default is 1. The

l ength associated with the function name in the function reference
nmust be the sanme as char_|l en.

See "How Type |Is Determined" in topic 3.2 for information on inplicit
typi ng.

name
is the name of this function subprogram nanme nay appear in a type
statenment, but in no other nonexecutable statement.

dumy _ar gunent
is a dummy argunent, described on page 10. 8.

A FUNCTI ON statenent specifies that a programunit is a function
subprogram A function subprogram, or external function, is a program
unit that specifies a function. A function subprogramis invoked by a
function reference and returns a value to the invoking programunit. For
the purpose of returning the function value, the function name and any
entry names are considered to be variable names, and you nmust assign a
val ue to one of those nanes during every execution of the function.

The first statement of a function subprogram nust be a FUNCTI ON st atenent.
A function subprogram may contain any statement except PROGRAM
SUBROUTI NE, and BLOCK DATA.

The vari abl e whose name is the name of the function is associated with any
vari abl es whose nanes are also entry names. This is called entry
association. The definition of any one of them becones the definition of
all the associated variables having that same type, and is the val ue of
the function no matter at which entry point it was entered. Such

vari ables are not required to be of the sane type unless the type is
character, but the variable whose name is used to reference the function
must be in a defined state when a RETURN or END statenment is executed in
the subprogram An associated variable of a different type nust not
become defined during the execution of the function reference

| Copyright IBM Corp. 1987, 1990
10.3.3-1

SAA CPI FORTRAN Reference
FUNCTION Statement--Function Subprogram (External Function)

Exanpl e of a FUNCTI ON St at enent

e mmmmm =
| Main Progranm i Function Subprogran

Bo o D m mm D o oo m m o h e Do m e C s e s e mmemcccm-—------ L
| I

| I

' program mai n | ¢ Dummy args are A, B, and C

' c Actual args are X2, X1, X0 H real function quad(a,b,c)

i real root, x2,x1, x0 H real a,b,c

i H quad = (-b + sqrt(b**2-4*a*c)) / (2*a)
d . i return

' c 2% (x**2) + 4.5*x + 1 1 end

! x2 = 2.0 '

' x1 = 4.5 '

' x0 =1.0 '

' ¢ Reference function sub. |

' root = quad(x2, x1, x0) H

| i

| 1

| 1

I 1

1 I
o

| Copyright IBM Corp. 1987, 1990
10.3.3-2

SAA CPI FORTRAN Reference
SUBROUTINE Statement

10. 4 SUBROUTI NE St at enent

o m e e e e e e e e e e e eeaaa o +

' WS ! VW ! 0S/400 ! 0S/2!

o e - oo e m e e e o e 1

i X X X X

e +

o e m e e e e e e e mm e e e e e e mmmmm o — =
i

' - = - SUBROUTI NE- - - NAME- = = = = = = = = = = = = = === mm oo o e oo e oo oo oo O

: Rl CEEP TP PEREE PP PPEEETPPPPRREETY)--+

! +--dummy_argunent _|ist--+

|

|

i

o e e e e e e e e e e e e e e e e m = =
name

is the name of this subroutine subprogram

dumy _ar gunment
is a dutmmy argunent, described on page 10.8.

The SUBROUTI NE st at enent specifies that a programunit is a subroutine
subprogram A subroutine subprogram or subroutine, is a program unit
that is invoked by its nanme or one of its entry names in a CALL statenent.
A subroutine subprogram may contain any statement except PROGRAM

FUNCTI ON, and BLOCK DATA.

Exanpl e of a SUBROUTI NE St at ement

subroutine fit(j,e,b)

| Copyright IBM Corp. 1987, 1990
104-1

SAA CPI FORTRAN Reference
CALL Statement

10.5 CALL St atenent

o m e e e e e e e e e e e eeaaa o +
I WS | VNV | 0OS/400] OS/2 |

o e - oo e m e e e o e 1

i X X X X

e +

o e m e e e e e e e mm e e e e e e mmmmm o — =
i

' == CALL---NaAME- - - - - = - s s m e e e e e O

: LRI CERT P RPEEER TP PERERPPRTPEERP IS)--+

! +--actual _argunment _|list--+

|

I

i

o e e e e e e e e e e e e e e e e m = =
name

is the name of a subroutine or an entry in a subroutine.
act ual _argument
is an actual argunent, described on page 10. 8.
The CALL statement:
1. Evaluates actual argunents that are expressions
Associ ates actual arguments with their correspondi ng dummy argunments
I nvokes the specified subroutine.

When the subroutine has processed, control returns fromthe subroutine.

Exanpl e of a CALL Statenment

call fit(k,e,q)

| Copyright IBM Corp. 1987, 1990
105-1

SAA CPI FORTRAN Reference
ENTRY Statement

10. 6 ENTRY St at enent

o m e e e e e e e e e e e eeaaa o +
I WS | VNV | 0OS/400] OS/2 |

o e - oo e m e e e o e 1

i X X X X

e +

o m e e e e e e +
I I
| I
' ---ENTRY---namB-------- - oo oo oo e O |
: Rl CERP T EREER TP PPPERPTPPPEERPRRE)--+ |
! +--dummy_argument _|ist--+ !
i i
i i
o m m e m e mem e — o +
name

is the name of an entry in a function subprogram or subroutine
subprogram and is called an entry nane.

dumy _ar gunment
is a dummy argunent, described on page 10. 8.

The ENTRY statenent establishes an alternate entry point. A function
subprogram or subroutine subprogram has a primary entry point that is
established via the SUBROUTI NE or FUNCTI ON st at enent.

In a function subprogram nanme identifies an external function and may be
referenced (invoked) as an external function. |In a subroutine subprogram
name identifies a subroutine and may be referenced as a subroutine. When
the reference is made, execution begins with the first executable
statement follow ng the ENTRY statenment.

The name of an entry in a function subprogram nust appear as a variable
name in the function subprogram and nust be defined upon exit fromthe
subprogram

In a function subprogram name may appear in a type statenment. |In a
function subprogram name nmay be used as a variable name if the variable
does not precede the ENTRY statenent.

If an entry name in a function subprogramis of type character, all entry
nanes in the subprogram and the name of the subprogram nust be of type
character. |If the length specifier of an entry nanmed in the function
subprogram or the nane of the subprogramitself is an asterisk in

parent heses (indicating inherited |length), all entry nanmes and the
subprogram name nmust have a | ength specifier of an asterisk in

parent heses; otherw se, all such names nust have a |length specification of
the same integer val ue

A nanme in dummy_argunent _|ist nust not al so appear:
O In an executable statenent preceding the ENTRY statement unless i
al so appears in a FUNCTI ON, SUBROUTI NE, or ENTRY statenent that

precedes the executabl e statenent

O In the expression of a statenment function statenent unless the name i
al so a dummy argument of the statement function, appears in a FUNCTI ON

| Copyright IBM Corp. 1987, 1990
106-1

SAA CPI FORTRAN Reference
ENTRY Statement

or SUBROUTI NE statenent, or appears in an ENTRY statement that
precedes the statenment function statenent

The nunmber of dummy argunents and their data types in the
dummy_argument _list of this ENTRY statenent, of other ENTRY statenents,

and of the primary entry point, may differ.

Exanpl e of an ENTRY St at enent

real function vol (rds, hgt)
parameter (pi = 3.14159)
real rds, hgt

a(rds) = pi * rds**2

vol = a(rds) * hgt

return

entry area(rds)

area = a(rds)

return

end

| Copyright IBM Corp. 1987, 1990
10.6-2

SAA CPI FORTRAN Reference
RETURN Statement

10. 7 RETURN St at enent

L L +
I WS | VNV | 0OS/400 | Os/2 |
o e - oo e m e e e o e 1
pooX 0 X X b X
R L +
B e e e +
I I
1 1
' e = NV i R I R O |
! +--integer_expr--+ !
| i
| |
B I e L +

i nt eger _expr
is an integer expression.

The RETURN st atenent:

O In a function subprogram ends the execution of the subprogram an
transfers control back to the referencing statement. The val ue of the
function is available to the referencing programunit.

O In a subroutine subprogram ends the execution of the subprogram an
transfers control to the first executable statement after the CALL
statenent or to an alternate return point, if one is specified.

i nt eger _expr may be specified in a subroutine subprogramonly, not a
function subprogram and it specifies an alternate return point. Letting
n be the value of integer_expr, if 1 = n = the nunber of asterisks in the
SUBROUTI NE or ENTRY statenment, the nth asterisk in the dummy argument |i st
is selected. Control then returns to the invoking programunit at the
statement whose statenent |abel is specified in the nth alternate return
specifier in the CALL statenment. For exanple, if the value of mis 5, the
fifth asterisk in the dunmy argunent list is selected, and control returns
to the statement whose statement |abel is specified in the fifth alternate
return specifier in the CALL statement.

If integer_expr is omtted or if its value (m is not in the range one

t hrough the nunmber of asterisks in the SUBROUTI NE or ENTRY statenent, a
normal return is executed. Control returns to the invoking program unit
at the statenent followi ng the CALL statement.

| Copyright IBM Corp. 1987, 1990
10.7-1

SAA CPI FORTRAN Reference
Arguments

10. 8 Argunents

An actual argument appears in the argument list of a procedure reference.
An actual argument nmay be one of the follow ng:

O An expression, excluding a character expression involvin
concatenati on of an operand whose |length specifier is an asterisk in
parent heses (indicating inherited |ength)

| An array nam

O An intrinsic function nanme except for those |isted under "INTRINSIC
Statement” in topic 6.8

ad An external procedure nam

O A dummy procedure nam

O If the actual argument is in a CALL statenent, an alternate return
specifier, having the form*stnt_|abel, where stnt_|abel is the
statenent |abel of an executable statement.

A dunmy argunent appears in the argunent |ist of a procedure. A dumy
argument is specified in a statement function statement, FUNCTI ON
statenment, SUBROUTI NE statenment, or ENTRY statement. Statenent functions,
functi on subprogranms, and subroutine subprograns use dunmy argunents to
indicate the types of actual argunents and whet her each argument is a
single value, array of values, procedure, or statenment |label. A dummy
argunent is classified as one of the follow ng:

A variabl e nam

An array nane (except in statenent functions

A procedure nane (except in statenent functions

An asterisk (in subroutines only, to indicate an alternate retur
point).

oy |

A given name may appear only once in a dumy argunent |ist.

A dummy argunment name nust not be used in an EQUI VALENCE, DATA, PARAMETER,
SAVE, or INTRINSIC statement. A dummy argunent name nmust not be the sanme
as the procedure nane appearing in a FUNCTION, SUBROUTI NE, ENTRY, or
statenment function statement in the same programunit.

A character dummy argunent of inherited |ength nust not be used as an
operand for concatenation, except in a character assignment statenent.

See "Exanple of a FUNCTION Statement™ in topic 10.3.3 for an exanple of
arguments.

Subt opi cs

10. 8.1 Associ ation of Arguments

10. Length of Character Argunents
10. Vari abl es As Dummy Arguments
10. Arrays As Dunmy Argunents

10. Procedures As Dumy Argunents
10. Asteri sks As Dummy Argunents

© © 0 0 ®
o AN W

| Copyright IBM Corp. 1987, 1990
108-1

SAA CPI FORTRAN Reference
Association of Arguments

10.8.1 Associ ation of Argunents

Actual argunents are associated with dummy argunments when a function or
subroutine is referenced (invoked). The first actual argunent becones
associated with the first dummy argunent, the second actual argunment with
the second dummy argunment, and so forth. Argument association within a
programunit term nates at the execution of a RETURN or END statenment in
the programunit. There is no retention of argunent association between
one reference of a subprogram and the next reference of the subprogram

Actual argunments mnmust agree in number, order, and type with their
correspondi ng dumry argunments, except for two cases: a subroutine nane
has no type and must be associated with a dummy procedure nane, and an
alternate return specifier has no type and nust be associated with an
asteri sk.

Argunment association may be carried through nore than one |evel of
procedure reference.

If a subprogramreference causes a dumry argunment in the referenced
subprogram to beconme associated with another dummy argument in the
referenced subprogram neither dummy argunent may becone defined during
execution of that subprogram For exanple, if a subroutine is headed by:

subroutine XYZ (A B)

and is referenced by:

call Xyz (C, O

then the dumy arguments A and B each beconme associated with the sane
actual argument C and therefore with each other. Neither A nor B may
becone defined during this execution of subroutine XYZ or by any
procedures referenced by XYZ.

If a subprogramreference causes a dummy argunment to become associ ated
with a data itemin a common block in the referenced subprogramor in a
subprogram referenced by the referenced subprogram neither the dummy
argument nor the data itemin the common bl ock may become defined within
the subprogram or within a subprogramreferenced by the referenced
subprogram

| Copyright IBM Corp. 1987, 1990
10.8.1-1

SAA CPI FORTRAN Reference
Length of Character Arguments

10. 8.2 Length of Character Argunents

If argunents are of type character, the lengths of the actual arguments
must be greater than or equal to the lengths of the dummy argunments. |If
an actual argunent is longer, only the |l eftnost characters are associ ated
with the dummy argunent.

If a dummy argument has a length specifier of an asterisk in parentheses,
the length of the dumrmy argument is "inherited" fromthe actual argunment.
The length is inherited because it is specified outside the program unit
containing the dummy argunent. |f the associated actual argunment is an
array name, the length inherited by the dunmy argunent is the length of an
array element in the associated actual argunent array.

| Copyright IBM Corp. 1987, 1990
10.8.2-1

SAA CPI FORTRAN Reference
Variables As Dummy Arguments

10.8.3 Variables As Dummy Argunents

A dummy argunment that is a variable nane nust be associated with an actual
argunent that is an expression.

A dumy argunment that is a variable name may be defined within a
subprogram if the associated actual argunent is a variable name, array

el enent nane, or character substring name. A dummy argunent that is a
vari abl e nanme nust not be redefined within a subprogramif the associated
actual argument is a constant, name of a constant, function reference,
expression involving operators, or expression enclosed in parentheses.

| Copyright IBM Corp. 1987, 1990
10.8.3-1

SAA CPI FORTRAN Reference
Arrays As Dummy Arguments

10.8.4 Arrays As Dummy Argunents

A dummy argunent that is an array name nust be associated with an actual
argument that is an array name, an array element nane, or an array el enment
substring name. The nunber and size of the dinmensions may differ.

If the actual argument is a noncharacter array name, the size of the dumy
argunment mnust not exceed the size of the actual argument and each actual
array element is associated with the dummy array el enent of the sane
subscript val ue.

If the actual argument is a noncharacter array element name with a
subscript value as, the size of the dummy argunent array nust not exceed
the size of the actual argument array plus one mnus as and the dumy
argunment array element with a subscript value of ds becomes associ ated
with the actual argunent array element that has a subscript value of as +
ds - 1.

If the actual argunent is a character array nane, character array el ement
name, or array elenment substring name and begins at character storage unit
acu of an array, character storage unit dcu of an associated dummy
argument array becomes associated with character storge unit acu + dcu - 1
of the actual argunment array.

| Copyright IBM Corp. 1987, 1990
10.8.4-1

SAA CPI FORTRAN Reference
Procedures As Dummy Arguments

10.8.5 Procedures As Dunmy Argunents

A dummy argunment that is a procedure is called a dunmy procedure. A dunmmy
procedure may only be associated with an actual argunent that is an
intrinsic function, external function, subroutine, or another dummy
procedure

The followi ng exanple illustrates the use of a dummy procedure

subroutine roots
external neg

X = quad(a, b, c, neg)

return

end

function quad(a, b, c,funct)
val = funct(a, b, c)

return

end

function neg(a,b,c)

return
end

| Copyright IBM Corp. 1987, 1990
10.85-1

SAA CPI FORTRAN Reference
Asterisks As Dummy Arguments

10.8.6 Asterisks As Dummy Argunents

A dummy argunment that is an asterisk may appear only in the dummy argunent
list of a SUBROUTI NE statement or an ENTRY statement in a subroutine
subprogram The correspondi ng actual argunment nust be an alternate return
specifier.

| Copyright IBM Corp. 1987, 1990
10.8.6-1

SAA CPI FORTRAN Reference
BLOCK DATA Statement--Block Data Subprogram

10. 9 BLOCK DATA St atenent--Block Data Subprogram

S +

' WS | VvV | OS/400 | os/ 2 |

o e - oo e m e e e o e 1

i X X X X

L e +

L I T R +
I 1

| I

d 2= - BLOCK- - DAT A - - - - - - oo o m oo o oo e oo g |

! +- - nanme- - + i

| I

| |

i i

o o e oo oo oo +
name

is the name of this block data subprogram

The BLOCK DATA statenent specifies that a programunit is a block data
subprogram A bl ock data subprogram is a programunit that provides
initial values for variables and array elements in named conmon bl ocks.
The only other statenments that may appear in a block data subprogram are
DI MENSI ON, EQUI VALENCE, COMMON, type, |MPLICIT, PARAMETER, SAVE, DATA, and
END. Comment lines are permtted.

More than one bl ock data subprogramis permtted in an executable program
but only one may be unnaned. Mdre than one naned common bl ock may be
initialized in a block data subprogram Restrictions on conmon bl ocks in
bl ock data subprograns are:

O Al itens in a named common bl ock nust appear in the COMMON statemen
even though they are not all initialized.

ad The same naned common bl ock must not be referenced in two differen
bl ock data subprograns.

O Only items in named comon bl ocks may be initialized in block dat
subprograns.

| Copyright IBM Corp. 1987, 1990
109-1

SAA CPI FORTRAN Reference
Chapter 11. Input/Output Statements

11.0 Chapter 11. |nput/Qutput Statenents
Thi s chapter describes:

O Record

O File

O Uni t

O The input/output statements: READ, WRI TE, PRI NT, OPEN, CLOSE,
BACKSPACE, ENDFI LE, and REW ND.

Subt opi cs

11.1 Records

11.2 Files

11.3 Units

11.4 READ, WRITE, and PRI NT Statenents

11.5 OPEN St at enent

11. 6 CLOSE St at enent

11.7 1 NQUI RE St at enent

11. 8 BACKSPACE, ENDFILE, and REW ND St at enents

| Copyright IBM Corp. 1987, 1990
11.0-1

I NQUI RE

SAA CPI FORTRAN Reference
Records

11.1 Records

A record is a sequence of characters or a sequence of values. The three
ki nds of records are formatted, unformatted, and endfile.

Subt opi cs

11.1.1 Formatted Records
11.1.2 Unformatted Records
11.1.3 Endfil e Records

| Copyright IBM Corp. 1987, 1990
111-1

SAA CPI FORTRAN Reference
Formatted Records

11.1.1 Formatted Records

A formatted record is a sequence of characters. When a formatted record
is read, data values represented by characters are converted to internal
form \Wen a formatted record is witten, the data to be witten is
converted frominternal formto characters.

If a formatted record is printed, (2) the first character of the record
determ nes vertical spacing and is not printed. The remaining characters
of the record, if any, are printed beginning at the left margin. Vertical
spacing is as follows:

L L +
I First | '
| Character i Vertical Spacing before Printing !
i of Record ' '
B o m m ea—ao '
i Blank i One line '
L e '
10 i Two lines 1
Fem e e e e e e L T eSS '
1 i To first line of next page '
T R L L L L L L L E T !
. I No advance 1
L L +

(2) Printing may be performed on a printer or on some other
devi ce.

| Copyright IBM Corp. 1987, 1990
11.1.1-1

SAA CPI FORTRAN Reference
Unformatted Records

11.1.2 Unformatted Records

An unformatted record is a sequence of values in a system dependent form
and may contain both character and noncharacter data or may contain no
data. The values are in their internal formand are not converted in any

way when read or written.

| Copyright IBM Corp. 1987, 1990
11.1.2-1

SAA CPI FORTRAN Reference
Endfile Records

11.1.3 Endfil e Records

An endfile record is the last record of a file. It is witten by an
ENDFI LE st atement and has no | ength.

| Copyright IBM Corp. 1987, 1990
11.1.3-1

SAA CPI FORTRAN Reference
Files

11.2 Files

Afile is a sequence of records. The two kinds of files are external and
internal. Access to an external file may be sequential or direct.

Subt opi cs

11.2.1 External Files

11.2.2 External File Access--Sequential or Direct
11.2.3 Internal Files

| Copyright IBM Corp. 1987, 1990
11.2-1

SAA CPI FORTRAN Reference
External Files

11.2.1 External Files

An external file is a file stored on an input/output device such as a
di sk, tape, or termnal.

An external file is said to exist for a programif it is available to the
program for reading or was created within the program Creating an
external file causes it to exist when it did not previously. Deleting an
external file ends its existence. An external file may exist but contain
no records, if none were witten yet. All input/output statenents may
refer to external files that exist. All input/output statements except
READ may refer to external files that do not exist.

An external file may have a name. The name is system dependent.

The position of an external file is usually established by the preceding
i nput/out put operation. An external file may be positioned to:

O An initial point, which is the position just before the first record.
O Atermnal point, which is the position just after the last record.

O Acurrent record, when the file is positioned within a record.
Ot herwi se, there is no current record.

O A preceding record, which is the record just before the current file
position. A preceding record does not exist when the file is
positioned at its initial point or at the first record of the file.

0O A next record, which is the record just after the current file
position. The next record does not exist when the file is positioned

at the termnal point or in the last record of the file.

O An indeterm nate position after an error

| Copyright IBM Corp. 1987, 1990
11.21-1

SAA CPI FORTRAN Reference
External File Access--Sequential or Direct

11.2.2 External File Access--Sequential or Direct

The two met hods of accessing the records of an external file are
sequential and direct. The method is deternmi ned when the file is
connected to a unit.

A file connected for sequential access contains records in the order they
were written. The records nust be either all formatted or al

unformatted, except that the last record of the file nust be an endfile
record. The records must not be read or witten by direct access

i nput/output statements during the tine the file is connected for
sequenti al access

The records of a file connected for direct access nmay be read or witten
in any order. The records nust be either all formatted or al

unformatted, except that the last record of the file may be an endfile
record if the file may al so be connected for sequential access. |In this
case, however, the endfile record is not considered to be part of the file
while the file is connected for direct access. The records nust not be
read or witten by sequential access input/output statements during the
time the file is connected for direct access, or read or written using
list-directed formatting

Each record in a file connected for direct access has a record nunber
which identifies its order in the file. The record nunber is an integer
val ue that nust be specified when the record is read or witten. Records
are nunbered sequentially. The first record is nunmber 1. Records need
not be read or witten in the order of their record nunbers. For exanple,
records 9, 5, and 11 can be written in that order without witing the

i ntermedi ate records.

All records in a file connected for direct access nust have the sanme
I ength, which is specified when the file is connected

Records in a file connected for direct access cannot be del eted but can be
rewritten with a new value. A record cannot be read unless it was first
written.

| Copyright IBM Corp. 1987, 1990
11.22-1

SAA CPI FORTRAN Reference
Internal Files

11.2.3 Internal Files

An internal file is a character variable, character array, character array
el ement, or character substring.

If an internal file is a character variable, character array el enent, or
character substring, the file consists of one record with a length equa

to that of the variable, array element, or substring. If an internal file
is a character array, each element of the array is a record of the file,

wi th each record having the same | ength.

Readi ng and writing records is acconplished only by sequential -access
formatted input/output statements that do not specify list-directed
formatting. READ, WRITE, and PRINT are the only input/output statenents
that may specify an internal file.

If a WRITE statenent wites |less than an entire record, blanks fill the
remai nder of the record

An internal file always exists

A variable, array elenent, or character substring that is a record of an
internal file may becone defined or undefined by means other than an

out put statenent. For exanple, it may become defined by a character

assi gnnment statenment.

| Copyright IBM Corp. 1987, 1990
11.23-1

SAA CPI FORTRAN Reference
Units

11.3 Units

A unit is a nmeans of referring to an external file. Prograns refer to
external files by the unit nunbers specified in unit specifiers in
i nput/output statements. See page 11.4 for the formof a unit specifier.

Subt opi cs
11.3.1 Connection of a Unit

| Copyright IBM Corp. 1987, 1990
11.3-1

SAA CPI FORTRAN Reference
Connection of a Unit

11. 3.1 Connection of a Unit

The association of a unit with an external file is called a connection.
Connection nmust occur before the records of the file nay be read or
written. Connection may occur by preconnection, which is prior to program
execution, or by an OPEN statement. See the publications for your FORTRAN
product for more information about preconnection.

A file may be connected and not exist. An exanple is a preconnected new
file.

Al l input/output statements except OPEN, CLOSE, and | NQUI RE nust specify
units that are connected to an external file.

The CLOSE statement disconnects a file froma unit. The file may be
connected again within the same executable programto the same unit or to
a different unit, and the unit may be connected again within the same
execut able programto the same file or to a different file.

| Copyright IBM Corp. 1987, 1990
11.31-1

SAA CPI FORTRAN Reference
READ, WRITE, and PRINT Statements

11.4 READ, WRITE, and PRI NT Statenents

+
'
'
'
'
'
'
'
+
'
'
'
'
'
'
'
+
'
'
'
'
'
'
'
'
+
'
'
'
'
'
'
'

<o READ- - - - - f OF B = - = = = = = = = o o m e e O
! +--,--io_itemlist--+ !
+--(--io_control _list--)---------------------- +

+
h
'
o
l_.
—
[¢]
3
[%2])
—
'
'
+

+
'
'

:
o
I_.
—
D
2
[%2]
—_
'

'
+

f or mat
is a format identifier, described bel ow under FMI=for mat.

io_item
is an input/output list item An input/output |ist specifies the data
to be transferred. An input/output list item my be:

O A variable nane.

O An array element nane.

O A character substring name.

O An array name. The array is treated as if all of its elenents
were specified in the order they are arranged in storage.

O In an output list only, any other expression except a character

expression involving concatenation of an operand whose | ength
specifier is an asterisk in parentheses (indicating inherited
I ength) unless the operand is the name of a constant.

O An inplied-DO |ist, described on page 11.4.4.

io_control _list
is alist that must contain one unit specifier and may al so contain
one of each of the other permtted specifiers. The permtted
specifiers are:

| Copyright IBM Corp. 1987, 1990
11.4-1

SAA CPI FORTRAN Reference
READ, WRITE, and PRINT Statements
[UNI T=] u
is a unit specifier, which specifies the unit to be used in the
i nput/output operation. wu is an external unit identifier or
internal file identifier.

An external unit identifier refers to an external file. It is one
of the follow ng:

O An | NTECER*4 expression whose value is in the range zero
through 99, inclusive.

O An asterisk, identifying an installation-defined unit that is
preconnected for formatted sequential access. Note: Although
ot her input/output statenents also allow a unit specifier,
only the READ, WRITE, and PRI NT statenents allow its value to
be an asteri sk.

An internal file identifier refers to an internal file. It is the
name of a character variable, character array, character array
el ement, or character substring.

If the optional characters UNIT= are omitted, u must be the first
itemin io_control _|ist.

[FMT=] f or mat
is a format specifier, which specifies the format to be used in

the input/output operation. format is a format identifier, which
may be:

0 The statenent | abel of a FORMAT statenent. (The FORMVAT
statenent is described on page 12.1.2.)

0 The nane of an | NTEGER*4 vari abl e that was assigned the
stat enent | abel of a FORMAT statenent.

O The nane of a character array. (See "Character Format
Specification” in topic 12.1.3 for nore information.)

O Any character expression except one involving concatenati on of
an operand whose length specifier is an asterisk in
parentheses (indicating inherited I ength) unless the operand
is the name of a constant. (See "Character Fornmat
Specification" in topic 12.1.3 for nore information.)

0 An asterisk, specifying list-directed formatting.
(List-directed formatting is described on page 12.4.)

If the optional characters FMI= are om tted, format nmust be the
second itemin io_control _list and the first item must be the unit
specifier with UNIT= om tted.

REC=i nt eger _expr
is a record specifier, which specifies the nunmber of the record to
be read or witten in a file connected for direct access.
integer_expr is an integer expression whose value is positive. A
record specifier is not permitted if formatting is list-directed,
if the unit specifier specifies an internal file, or if an
end-of-file specifier is specified.

| OSTAT=i os
is an input/output status specifier, which specifies the status of
the input/output operation. io0s is the nane of a variable or

array el ement of type |NTEGER*4. \hen the input/output statement
containing this specifier finishes execution, ios is defined wth:

| Copyright IBM Corp. 1987, 1990
11.4-2

SAA CPI FORTRAN Reference
READ, WRITE, and PRINT Statements
0 (For a READ statement only) a negative value if an end-of-file
specifier is specified, an end-of-file condition was
encountered, and no error occurred during execution of the
READ st at enent .

O A zero value if the input/output operation conpleted without
any errors.

O A positive value if an error occurred during the input/output
operation and an error specifier is specified. The meaning of
a positive value is system dependent.

ERR=st mt _| abel
is an error specifier, which specifies a statement |abel at which
execution is to continue when an error occurs during the execution
of the input/output statenment.

END=st nt _I| abel
is an end-of-file specifier, which specifies a statenment |abel at
whi ch execution is to continue when an endfile record is
encountered while reading froma file and no error occurred. This
specifier may only be specified in a READ statement that refers to
a unit connected for sequential access. |If an end-of-file
specifier is specified, a record specifier is not pernmtted.

A READ statement without io_control _|ist specified specifies the same unit
as a READ statenment with io_control _list specified in which the external
unit identifier is an asterisk.

Subt opi cs

11.4.1 Categories of READ, WRITE, and PRINT Statenments

11. 4.2 Execution of READ, WRITE, and PRI NT Statenents
11.4.3 File Position before and after Data Transfer

11.4.4 Inplied-DO List in a READ, WRITE, or PRINT Statenent
11. 4.5 Exanpl es of READ, WRITE, and PRI NT Statements

| Copyright IBM Corp. 1987, 1990
11.4-3

SAA CPI FORTRAN Reference
Categories of READ, WRITE, and PRINT Statements

11.4.1 Categories of READ, WRITE, and PRINT Statenments

A READ or WRITE statenent may be a formatted input/output statement or an
unformatted input/output statement. The PRINT statenment is a formatted
i nput/out put statenent.

A formatted input/output statement contains a format identifier and
transfers data with editing (conversion) occurring between the internal
formof the data and the character representation of that data in records.
The two net hods of formatting are:

ad Format-directed formatting, where editing is controlled by edi
descriptors in a format specification. Format specifications are
descri bed on page 12.1.1.

O List-directed formatting, where editing is controlled by the types an
I engths of the data being read or wwitten. List-directed formatting
is described on page 12. 4.

If a formatted READ, WRITE, or PRINT statenent has an asterisk as a
format identifier, the statenent is a list-directed input/output
statenment, and a record specifier nust not be present.

An unformatted input/output statement does not contain a format identifier
and transfers data without perform ng editing.

A READ or WRITE statement is a direct access input/output statenent if it
contains a record specifier, or a sequential access input/output statement
if it does not contain a record specifier.

| Copyright IBM Corp. 1987, 1990
11.4.1-1

SAA CPI FORTRAN Reference
Execution of READ, WRITE, and PRINT Statements

11. 4.2 Execution of READ, WRITE, and PRI NT St atenents

The READ statenment reads data froman external file to internal storage or
froman internal file to internal storage. Values are transferred from
the file to the data itens specified by the input list (io_itemlist), if
one is specified.

The WRITE and PRI NT statenents wite data frominternal storage to an
external file or frominternal storage to an internal file. Values are
transferred to the file fromthe data itenms specified by the output Iist
(io_itemlist) and format specification, if they are specified. Execution
of a WRITE or PRINT statement for a file that does not exist creates the
file, unless an error occurs.

| Copyright IBM Corp. 1987, 1990
11.42-1

SAA CPI FORTRAN Reference
File Position before and after Data Transfer

11. 4.3 File Position before and after Data Transfer

The positioning of a file prior to data transfer depends on the nethod of
access:

O Sequential access for an external file: On input, the file i
positioned at the beginning of the next record. This record becones
the current record. On output, a new record is created and becones
the last record of the file.

Sequential access for an internal file: The file is positioned at the
begi nning of the first record of the file. This record becones the
current record.

O Direct access: The file is positioned at the beginning of the recor
specified by the record specifier. This record becomes the current
record.

After data transfer, the file is positioned:

O Beyond the endfile record if an end-of-file condition exists as
result of reading an endfile record.

ad Beyond the | ast record read or witten if no error or end-of-fil
condition exists. That l|ast record becones the preceding record. A
record witten on a file connected for sequential access becones the
last record of the file.

If afile is positioned beyond the endfile record, execution of a READ,
WRI TE, PRI NT, or ENDFILE statenment is not permtted. However, a BACKSPACE

or REWND statement may be used to reposition the file.

If an error occurs, the position of an external file is indeterm nate.

| Copyright IBM Corp. 1987, 1990
11.43-1

SAA CPI FORTRAN Reference
Implied-DO List in a READ, WRITE, or PRINT Statement

11.4.4 Inplied-DO List in a READ, WRI TE, or PRI NT Statenent

An inplied-DO |ist may be used in a READ, WRITE, or PRINT statement to

specify the data to be transferred. |Its formis:

e e m e e c e e e e mmmmemeecececsmemsmmmmmemememsmsm-e-msmsmsmsmsmsmsmsmsmmmmeammmmmmmm--ecececcc-m-m--------m--ssmmcemm————————-a
|

' --(-do_object_list--,--variable_nane-- = --arith_exprl--,--arith_expr2--------------------)- O
' +-,--arith_expr3-+

I

|

i
e,
do_obj ect

is an input/output list item (see page 11.4).

vari abl e_nane
arith_exprl
arith_expr2
arith_expr3
are as specified for the DO statenment (see page 9.7).

The range of an inplied-DO list is the list do_object_list. The iteration
count and the values of the DO variable are established from arith_exprl,
arith_expr2, and arith_expr3, the same as for a DO statenent. (See
"Execution of a DO Statement” in topic 9.7.3.) \Wien the inplied-DO |ist
is executed, the items in the do_object_list are specified once for each
iteration of the inplied-DO list, with the appropriate substitution of

val ues for any occurrence of the DO vari able.

In a READ statenent, the DO variable or an associated data item nust not
appear as an input list itemin the do_object_list, but may be read in the
same READ statenent outside of the inplied-DO list. For exanple:

read(3,150) isize,(jinx(i),i=1,isize)
150 format (10i7)

In the exanple, the value of ISIZE is read with the sane READ st at enent
but outside of the inplied-DO list of which it is a part. One elenment of
the array JINX is defined with each iteration of the inplied-DOIlist.

| Copyright IBM Corp. 1987, 1990
11.44-1

SAA CPI FORTRAN Reference
Examples of READ, WRITE, and PRINT Statements

11. 4.5 Exanpl es of READ, WRITE, and PRI NT Statenents

Exanmpl e of Formatted READ and WRI TE Statenents

integer |ength,w dth, depth
character*8 chr_tine

read(10, 200) | ength, w dth, depth
200 format(i5,i10,i10)
write(*,"'(a,a)') '"The time is:',chr_tinme(1:8)

Exanpl e of Unformatted READ and WRI TE Statenents

integer data_unit, size, a(1000), buffer(2000)

read(unit=data_unit) size,(a(j),]j=1,size)
write(20) buffer

| Copyright IBM Corp. 1987, 1990
11.45-1

SAA CPI FORTRAN Reference
OPEN Statement

11.5 OPEN St at ement

m
<
)
©
@
B
|_
[%2])
2

'

'

'

'

'

'
O

open_lIi st
is alist that nmust contain one unit specifier (UNI T=u) and may al so

contain one of each of the other permtted specifiers. The permtted
specifiers are:

[UNI T=] u
is a unit specifier in which u nust be an external unit identifier
whose value is not an asterisk. External unit identifiers are

described on page 11.4. |f the optional characters UNI T= are
omtted, u nust be the first itemin open_list.

| OSTAT=i os
is an input/output status specifier, described on page 11.4.

ERR=st mt _I| abel
is an error specifier, described on page 11.4.

FI LE=char _expr
is a file specifier, which specifies the name of the file to be
connected to the specified unit. char_expr is a character
expressi on whose val ue, when any trailing blanks are renoved, is
the system dependent nane of the file. |If the file specifier is
omtted, the unit beconmes connected to a systemdeterm ned file.

STATUS=char _expr
specifies the status of the file when it is opened. <char_expr is
a character expression whose value, when any trailing blanks are
renoved, is one of the follow ng:

O OLD, to connect an existing file to a unit. If OLDIis
specified, a file specifier nust be specified.

O NEW to create a newfile and connect it to a unit. |If NEWis
specified, a file specifier nust be specified.

O SCRATCH, to create and connect a new file that will be del eted

when it is disconnected. SCRATCH nust not be specified with a
named file (that is, FILE=char_expr nust be omtted).

O UNKNOWN, to connect an existing file, or to create and connect
a new file. |If the file exists it is connected as OLD. |If
the file does not exist it is connected as NEW

UNKNOWN i s the default.

ACCESS=char _expr
specifies the access method for the connection of the file.

| Copyright IBM Corp. 1987, 1990
115-1

SAA CPI FORTRAN Reference
OPEN Statement
char_expr is a character expressi on whose val ue, when any trailing
bl anks are renoved, is either SEQUENTIAL or DI RECT. SEQUENTIAL is
the default

FORM=char _expr
speci fies whether the file is connected for formatted or
unformatted input/output. char_expr is a character expression
whose val ue, when any trailing blanks are removed, is either
FORMATTED or UNFORMATTED. |If the file is being connected for
sequenti al access, FORMATTED is the default. |If the file is being
connected for direct access, UNFORMATTED is the default.

RECL=i nt eger _expr
specifies the I ength of each record in a file being connected for
direct access. integer_expr is an | NTEGER*4 expression whose
val ue nust be positive. This specifier nust be omtted when a
file is being connected for sequential access

BLANK=char _expr
controls the default interpretation of blanks when using a format
specification. char_expr is a character expression whose val ue
when any trailing blanks are renmoved, is either NULL or ZERO. See
"BN (Bl ank Null) and Bz (Blank Zero) Editing" in topic 12.3.5 for
descriptions of NULL and ZERO

The OPEN statenent nmay be used to connect an existing external file to a
unit, create an external file that is preconnected, create an externa
file and connect it to a unit, or change certain specifiers of a
connection between an external file and a unit.

If a unit is connected to a file that exists, execution of an OPEN
statenent for that unit is permtted. |If the file specifier is not
included in the OPEN statenent, the file to be connected to the unit is
the same as the file to which the unit is connected

If the file to be connected to the unit does not exist, but is the same as
the file to which the unit is preconnected, the properties specified by
t he OPEN statenment becone a part of the connection

If the file to be connected to the unit is not the same as the file to
which the unit is connected, the effect is as if a CLOSE statenment wi thout
a STATUS=char _expr specifier had been executed for the unit inmediately
prior to the execution of the OPEN statenent.

If the file to be connected to the unit is the same as the file to which
the unit is connected, only the BLANK=char_expr specifier nmay have a val ue
different fromthe one currently in effect. Execution of the OPEN
statement causes the new val ue of the BLANK=char_expr specifier to be in
effect. The position of the file is unaffected

If a file is connected to a unit, execution of an OPEN statenent on that
file and a different unit is not permtted

Exanpl e of an OPEN St at enent

character*20 fnane
fnane = 'input.dat
open(unit=8,fil e=fname, status="new ,fornme' formatted')

In the exanple, the value of character variable FNAME is system dependent.

| Copyright IBM Corp. 1987, 1990
115-2

SAA CPI FORTRAN Reference
CLOSE Statement

11. 6 CLOSE St at enent

o m e e e e e e e e e e e e +

I WS | VvV | 0OS/400 | OS/2 |

o e - oo e m e e e o e 1

X X X 4 X

e +

R e e +
| |
1 1
' ---CLOSE--(--close_liSt-=-)-------mommm e O |
| I
| I
| |
o o m o e o e e o e —o +

close_list
is alist that nmust contain one unit specifier (UNI T=u) and may al so
contain one of each of the other permtted specifiers. The permtted
specifiers are:

[UNI T=] u
is a unit specifier in which u nust be an external unit identifier
whose value is not an asterisk. External unit identifiers are
described on page 11.4. |f the optional characters UNI T= are
omtted, u nust be the first itemin close_list.

| OSTAT=i os
is an input/output status specifier, described on page 11.4.

ERR=st mt _I| abel
is an error specifier, described on page 11.4.

STATUS=char _expr
specifies the disposition of the file after it is closed.
char_expr is a character expression whose value, when any trailing
bl anks are renmoved, is either KEEP or DELETE.

0 If KEEP is specified for a file that exists, the file wll
continue to exist after the execution of the CLOSE statenent.
If KEEP is specified for a file that does not exist, the file
will not exist after the execution of the CLOSE statenent.
KEEP must not be specified for a file whose status prior to
execution of the CLOSE statenment is SCRATCH.

O I f DELETE is specified, the file will not exist after
execution of the CLOSE st atenent.

The default is DELETE if the file status prior to execution of the
CLOSE statement is SCRATCH, otherwi se it is KEEP.

The CLOSE statenent disconnects an external file froma unit.

At term nation of execution of an executable program for reasons other
than an error condition, all units that are connected are closed. Each
unit is closed with status KEEP unless the file status prior to

term nation of execution was SCRATCH, in which case the unit is closed
with status DELETE. Note that the effect is as though a CLOSE statenment
wi t hout a STATUS=char_expr specifier were executed on each connected unit.

| Copyright IBM Corp. 1987, 1990
116-1

SAA CPI FORTRAN Reference
CLOSE Statement

Exanpl es of CLOSE Statenents

cl ose(15)
cl ose(unit=16, status='del ete')

| Copyright IBM Corp. 1987, 1990
11.6-2

SAA CPI FORTRAN Reference
INQUIRE Statement

11.7 |1 NQUI RE St at enent

o m e e e e e e e e e e e e +

I WS | VvV | 0S/400 | Os/2

o e - oo e m e e e o e 1

X X X X

e +

o e m e e e e e e e mm e e e e e e mmmmm o — =
i

' ---INQUIRE---(--inquiry_list--)---c-mmmom e O

|

|

|

e e e e e e e e e e e e e e e e m o mmmmmm—m = =

inquiry_list
is alist of inquiry specifiers. 1In an INQUI RE-by-file statement,
inquiry_list nust contain one file specifier (FlILE=char_expr), nust
not contain a unit specifier (UNIT=u), and may contain at nmost one of
each of the other inquiry specifiers. In an | NQU RE-by-unit
statement, inquiry_list nust contain one unit specifier, nust not
contain a file specifier, and may contain at nmost one of each of the
other inquiry specifiers. The inquiry specifiers are

FI LE=char _expr
is afile specifier, and specifies the name of the file about
whi ch an I NQUI RE-by-file statement is inquiring. char_expr is a
character expression whose val ue, when any trailing blanks are
renoved, is the system dependent name of the file. The named file
does not have to exist nor does it have to be associated with a
uni t

[UNI T=] u
is a unit specifier, and specifies the unit about which an
I NQUI RE- by-unit statement is inquiring. u nmust be an externa
unit identifier whose value is not an asterisk. External unit
identifiers are described on page 11.4. If the optiona
characters UNIT= are omtted, u nust be the first itemin
inquiry_list.

| OSTAT=i os
is an input/output status specifier, described on page 11.4

ERR=st nt _| abe
is an error specifier, described on page 11.4. The | NQUI RE
statement does not cause any error conditions

EXI ST=ex
indicates whether a file or unit exists. ex is a logical variable
or logical array elenment that is assigned the value true or false
For an | NQUI RE-by-file statement, the value true is assigned if
the file specified by FILE=char_expr exists, or the value false is
assigned if the file does not exist. For an | NQUI RE-by-unit
statenment, the value true is assigned if the unit specified by
UNI T=u exists, or the value false is assigned if the unit does not
exi st.

OPENED=0d
i ndi cates whether a file or unit is connected. od is a |logica

| Copyright IBM Corp. 1987, 1990
11.7-1

SAA CPI FORTRAN Reference
INQUIRE Statement

variable or logical array elenent that is assigned the value true
or false. For an INQUI RE-by-file statement, the value true is
assigned if the file specified by FILE=char_expr is connected to a
unit, or the value false is assigned if the file is not connected
to a unit. For an INQUI RE-by-unit statement, the value true is
assigned if the unit specified by UNIT=u is connected to a file
or the value false is assigned if the unit is not connected to a
file

NUMBER=Nnum
indicates the external unit identifier currently associated with
the file. numis an | NTEGER*4 variable or array element that is
assigned the value of the external unit identifier of the unit
that is currently connected to the file. |If there is no unit
connected to the file, num becones undefined

NAMED=nnd
i ndicates whether the file has a name. nnd is a logical variable
or logical array elenent that is assigned the value true if the
file has a name, or the value false if the file does not have a

nane.

NAME=f n
indicates the name of the file. fn is a character variable or
character array elenment that is assigned the value of the nanme of
the file if the file has a name, or becones undefined if the file

does not have a nanme

ACCESS=char _expr
i ndi cates whether the file is connected for sequential access or
direct access. char_expr is a character variable or character
array elenment that is assigned the value SEQUENTIAL if the file is
connected for sequential access, or the value DIRECT if the file
is connected for direct access. |If there is no connection
char _expr becomes undefined

SEQUENTI AL=seq
indicates whether the file can be accessed sequentially. seq is a
character variable or character array elenent that is assigned the
value YES if the file can be accessed sequentially, the value NO
if the file cannot be accessed sequentially, or the val ue UNKNOWN
if it cannot be determ ned

DI RECT=di r
indicates whether the file can be accessed directly. dir is a
character variable or character array element that is assigned the
value YES if the file can be accessed directly, the value NOif
the file cannot be accessed directly, or the value UNKNOWN if it

cannot be determ ned

FORM=char _expr
i ndi cates whether the file is connected for formatted or

unformatted input/output. char_expr is a character variable or
character array elenent that is assigned the value FORMATTED i f
the file is connected for formatted input/output, or the value
UNFORMATTED if the file is connected for unformatted input/output.
If there is no connection, char_expr becones undefined

FORMATTED=f mt
i ndi cates whether the file can be connected for formatted

| Copyright IBM Corp. 1987, 1990
11.7-2

SAA CPI FORTRAN Reference
INQUIRE Statement
input/output. fnt is a character variable or character array
el enent that is assigned the value YES if the file can be
connected for formatted input/output, the value NOif the file
cannot be connected for formatted input/output, or the value
UNKNOWN i f it cannot be determ ned.

UNFORMATTED=unf
i ndi cates whether the file can be connected for unformatted
input/output. fnt is a character variable or character array

el enent that is assigned the value YES if the file can be
connected for unformatted input/output, the value NOif the file
cannot be connected for unformatted input/output, or the value
UNKNOWN i f it cannot be determ ned

RECL=r cl
indicates the record length of a file connected for direct access.
rcl is an INTEGER*4 variable or array elenent that is assigned the
val ue of the record length. |If there is no connection or if the
connection is not for direct access, rcl beconmes undefined

NEXTREC=nr
i ndi cates where the next record may be read or witten on a file
connected for direct access. nr is an |INTEGER*4 variable or array
el ement that is assigned the value n + 1, where n is the record
nunmber of the last record read or written on the file connected
for direct access. |If the file is connected but no records were
read or witten since the connection, nr is assigned the value 1
If the file is not connected for direct access or if the position
of the file cannot be determ ned because of a previous error, nr
becomes undefi ned.

BLANK=char _expr
indicates the default treatment of blanks for a file connected for
formatted input/output. char_expr is a character variable or
character array element that is assigned the value NULL if al
bl anks in nuneric input fields are ignored (as in BN editing), or
the value ZERO if all nonl eading bl anks are interpreted as zeros

(as in BZ editing). |If there is no connection, or if the
connection is not for formatted input/output, char_expr becomes
undef i ned.

The | NQUI RE st atenment obtains information about:

O The properties of an external file. When used for this purpose th
file specifier (FILE=char_expr) nmust be specified and the statenent is
called an I NQUI RE-by-file statenment.

O An external file's association with a particular unit. \When used fo
this purpose the unit specifier (UN T=u) nust be specified and the
statenment is called an | NQUI RE-by-unit statement.

An | NQUI RE statenent may be executed before, while, and after a file is
associated with a unit. Any values assigned as the result of an | NQUI RE

statenment are values that are current at the time the statenent is
execut ed.

An | NQUI RE-by-file statement defines the inquiry_list variables and array
el ements as follows:

O Vari abl es or array elements specified by NAMED nnd, NAME=fn,

| Copyright IBM Corp. 1987, 1990
11.7-3

SAA CPI FORTRAN Reference
INQUIRE Statement
SEQUENTI AL=seq, DI RECT=dir, FORMATTED=fnt, and UNFORMATTED=unf becone
defined only if the value of char_expr is the nane of a file that
exi sts; otherw se, the variables or array el enents become undefined.

O A variable or array element specified by NUMBER num becomes defined
only if a variable or array el ement specified by OPENED=0od becones
defined with the value true.

O Variables or array el ements specified by ACCESS char_expr,
FORM=char _expr, RECL=rcl, NEXTREC=nr, and BLANK=char_expr becone
defined only if a variable or array el ement specified by OPENED=od
becomes defined with the value true.

An | NQUI RE- by-unit statement defines the inquiry_list variables and array
el ements specified by NUMBER=num, NAMED=nnmd, NAME=fn, ACCESS=char _expr,
SEQUENTI AL=seq, DI RECT=dir, FORM=char_expr, FORMATTED=f nt,
UNFORMATTED=unf, RECL=rcl, NEXTREC=nr, and BLANK=char_expr only if the
specified unit exists and if a file is connected to the unit; otherw se,
the variables or array el ements beconme undefined.

If an error occurs during execution of an I NQUI RE statement, all of the
inquiry_list variables and array el ements becone undefined, except the one

specified by | OSTAT=ios.

The inquiry_list variables or array el enments specified by EXI ST=ex and
OPENED=0d al ways beconme defined unless an error occurs.

Exanpl e of an | NQUI RE St at enent

inquire(file=filel, exist=f_ex, opened=f_od, nunber=f_num

| Copyright IBM Corp. 1987, 1990
11.7-4

SAA CPI FORTRAN Reference
BACKSPACE, ENDFILE, and REWIND Statements

11. 8 BACKSPACE, ENDFILE, and REW ND St at enents

o m e e e e e e e e e e e e +

I WS | VNV | 0OS/400 | Os/2 |

o e - oo e m e e e o e 1

i X 0 X X X

e +

o e m e e e e e e e mm e e e e e e mmmmm o — =
i

' - - - BACKSPACE- - - - - [e i O

! +--(--position_list--)--+

|

I

i

o e e e e e e e e e e e e e e e e m = =
s
i

' - - - ENDFI LE- - - - - [R R R R O

' +--(--position_list--)--+

I

1

i

o e mm e e e e e mm e e mmmmm e e e mm e e e e e e e e e e m e e m e mmmmmmm ==
e m e e e e e e e e e e e e e e e e e e e mmmmmmmmm e e e e e e m e e m e m e m e e e e e mm e m e m e mmmmmmmmm o mm =
i

' e (= B e | B e O

' +--(--position_list--)--+

|

I

i
o
u

is an external unit identifier, described on page 11.4. The val ue of
u nmust not be an asterisk.

position_Ilist
is alist that must contain one unit specifier (UNIT=u) and may al so
contain one of each of the other permtted specifiers. The permtted
specifiers are:

[UNI T=]u
is a unit specifier in which u nust be an external unit identifier
whose value is not an asterisk. External unit identifiers are
described on page 11.4. |If the optional characters UNI T= are
omtted, u nust be the first itemin position_list.

| OSTAT=i os
is an input/output status specifier, described on page 11.4.

ERR=st mt _| abel
is an error specifier, described on page 11.4.

External files connected for sequential access may be positioned using
BACKSPACE, ENDFI LE, and REW ND statements, with the follow ng effects:

O BACKSPACE positions a file connected to a specified unit before th
preceding record. |If there is no preceding record, the file position
does not change. |If the preceding record is the endfile record, the

| Copyright IBM Corp. 1987, 1990
11.8-1

SAA CPI FORTRAN Reference
BACKSPACE, ENDFILE, and REWIND Statements

file is positioned before the endfile record. Backspacing over
records that were written using list-directed formatting is not
perm tted.

O ENDFI LE writes an endfile record as the next record of a file. Thi
record beconmes the last record in the file.

O REW ND positions a file at its initial point

Exanpl es of BACKSPACE, ENDFILE, and REW ND St at enents

backspace 15
backspace (unit=15, err=99)

endfile 12
endfile (iostat=ioss,unit=11)
rewind 9

| Copyright IBM Corp. 1987, 1990
11.8-2

SAA CPI FORTRAN Reference
Chapter 12. Input/Output Formatting
12.0 Chapter 12. |nput/Qutput Formatting
Formatted READ, WRI TE, and PRINT statements use formatting information to
direct the editing (conversion) between internal data representations and
character representations in formatted records (see "Formatted Records" in
topic 11.1.1). This chapter describes the two methods of formatting:

O Format-directed formattin
O List-directed formatting

Subt opi cs

12.1 Format-Directed Formatting

12.2 Interaction between an |nput/Qutput List and a Format Specification
12.3 Editing

12. 4 List-Directed Formatting

| Copyright IBM Corp. 1987, 1990
12.0-1

SAA CPI FORTRAN Reference
Format-Directed Formatting

12.1 Format-Directed Formatting

Wth format-directed formatting, editing is controlled by edit descriptors
in a format specification. A format specificationis specifiedin a
FORMAT statement or as the value of a character array or character
expression in a READ, WRITE, or PRINT statenent.

Subt opi cs

12.1.1 Format Specification

12.1.2 FORVAT St at enent

12.1.3 Character Format Specification

| Copyright IBM Corp. 1987, 1990
121-1

SAA CPI FORTRAN Reference
Format Specification

12.1.1 Format Specification

A format specification (format_spec) has the form

+
h
!
—
o
=
g
I_.
—_
0]
E]
(%]
—_
!
!
+

e e e e e e e e e e e e e e e e m o mmmmmm—m = =
|

R data_edit_desC--------cmmmmm O

' +--f--+

i

' ---control _edit_desC-----------omo e O

i

T (--format _itemlist--)---------------me oo O

i +--r--+

i

i

e m e e e e e e e e e e e e e e e e e e e mmmmmmmmm e e e e e e m e e m e m e m e e e e e mm e m e m e mmmmmmmmm o mm =
r

is an unsigned, nonzero, integer constant called a repeat
specification. The default is 1.

dat a_edit_desc
is a data (or repeatable) edit descriptor. The forns are:

T T +
i i i See i
| Fornms 1 Use | Page i
o e LT Fommmm e !
' | Edits character val ues 1 12.3.3 '
PA i i i
| AW : : :
| 1 | 1
I 1 | 1
B o m m e e e e e e e e e e e e m e e e mea—ao o e e e e e e o aa o '
' i Edits real and conpl ex nunbers 1 12.3.6 H
I Ew.d i wWith exponents H '
| Ew. dEe H H 1
i Cw.d i i i
I 1 I 1
| 1 I 1
rememe e e T T T !
1 Fw.d | Edits real and conpl ex nunbers 1 12.3.7 i
d | without exponents | |
L . R e Fommem e e e aaaa !
' i Edits real and conpl ex numbers, 1 12.3.8 '
I Cw.d I with the output format adapting to | '
| Cw. dEe | the magni tude of the nunber | 1
i i i i
I I LR R I '
' | Edits integer nunbers 1 12.3.10 '
P lw i i i
P lwer i i i

| Copyright IBM Corp. 1987, 1990
12.1.1-1

SAA CPI FORTRAN Reference
Format Specification

B o m m e e e e e e e e e e e e e e e e e e meaoa-- o e e e e e e e aoa o
I Lw i Edits logical values 1 12.3.11
B o m m e e e e e e e e e e e e m e e e mea—ao o e e e e e e o aa o
12w | Edits hexadeci mal val ues 1 12.3.15
e e e e e eeeeeeeeece-ssmecesmemememeecececececececececeeeeceeeeeeemmmemmmemee ... ———————

control _edit_desc
is a control (or nonrepeatable) edit descriptor. The fornms are:

o e m e mm ==
i i 1 See

I Forns I Use | Page
e T o
) | Specifies the end of data transfer | 12.3.1

' | on the current record '

B o m m e e e e e e e e e e e e m e e e mea—ao o e e e e e e o aa o
' i Specifies the end of format 1 12.3.2

' | control if there are no nore itens |

' i in the input/output |ist H

L T B T T T T ey R
ith i Specifies a character string (h) 1 12.3. 4

i i for output H
o e LT Fommmm e
i BN | Specifies that blanks in nuneric 1 12.3.5

! \ input fields are to be ignored 1
e T o
| BZ | Specifies that nonleading bl anks 1 12.3.5

' i in nuneric input fields are to be |

' | interpreted as zeros '

L L o e e e e e e e oo o
i nHh | Specifies a character string for 1 12.3.9

' | out put '

L T B T T T T ey R
1 kP i Specifies a scale factor 1 12.3.12

rememe e e T T T
d | Specifies that plus signs are not | 12.3.13

1S | to be written i

i SS i i

| i |

B o m m e e e e e e e e e e e e e e e e e e meaoa-- o e e e e e e e aoa o
| SP | Specifies that plus signs are to 1 12.3.13

' | be written |

L L o e e e e e e e oo o
1 Tc | Specifies the absolute position in | 12.3.14

' i a record fromwhich, or to which, |

' | the next character is transferred |

rememe e e T T T
i TLc i Specifies the relative position 1 12.3.14

d | (backward from the current i

d | position in a record) from which, |

! ! or to which, the next character is |

! | transferred !

B o m m e e e e e e e e e e e e e e e e e e meaoa-- o e e e e e e e aoa o
I TRc | Specifies the relative position 1 12.3. 14

' i (forward fromthe current position |

' \ in a record) fromwhich, or to 1

' i which, the next character is 1

' i transferred '

L T B T T T T ey R

| Copyright IBM Corp. 1987, 1990
12.1.1-2

SAA CPI FORTRAN Reference
Format Specification

nX | Specifies the relative position !
| (forward fromthe current position |
\ in a record) fromwhich, or to !
i which, the next character is 1
i transferred '

Commas separate edit descriptors. However, you may omt the comma between
a P edit descriptor and an F, E, D, or G edit descriptor imediately
following it; before or after a slash edit descriptor; and before or after
a colon edit descriptor.

| Copyright IBM Corp. 1987, 1990
12.1.1-3

SAA CPI FORTRAN Reference
FORMAT Statement

12.1.2 FORMAT St at enment

o m e e e e e e e e e e e e +

I WS | VvV | 0OS/400 | OS/2 |

o e - oo e m e e e o e 1

X X X 4 X

e +

o e m e e e e e e e mm e e e e e e mmmmm o — =
i

' ---FORMAT--fOrmat _SpeC----------- - oo oo oo O

|

|

|

e e e e e e e e e e e e e e e e m o mmmmmm—m = =

f or mat _spec
is described on page 12.1.1.

The FORMAT statenent specifies a format specification. Wen a format
identifier (page 11.4) in a formatted READ, WRITE, or PRINT statenent is a
statenment | abel or a statement |abel assigned to a variable name, the
statenent |abel identifies a FORMAT statenent.

The FORMAT statenent nust have a statenent | abel.

Exanpl es of FORMAT St atenents

990 format(i5, 2f10.2)
880 format(i5, f10.2, i5)

| Copyright IBM Corp. 1987, 1990
12.1.2-1

SAA CPI FORTRAN Reference
Character Format Specification

12.1.3 Character Format Specification

VWhen a format identifier (page 11.4) in a formatted READ, WRITE, or PRINT
statenent is a character array name or character expression, the value of
the array or expression is a character format specification. Such a
format specification has the form format_spec, described on page 12.1. 1.

If the format identifier is a character array element name, the format
specification nust be conpletely contained within the array element. |f
the format identifier is a character array name, the format specification
may continue beyond the first element into follow ng consecutive el ements.

Bl anks may precede the format specification. Character data may follow
the right parenthesis that ends the format specification, with no effect

on the format specification.

Exanpl e of a Character Format Specification

character*18 charvar

charvar = '(f10.2, i5, f10.2)'
write(*,charvar) solid, liquid, gas

| Copyright IBM Corp. 1987, 1990
12.1.3-1

SAA CPI FORTRAN Reference
Interaction between an Input/Output List and a Format Specification

12.2 Interaction between an |nput/Qutput List and a Format Specification

The beginning of format-directed formatting initiates format control .
Each action of format control depends on the next edit descriptor
contained in the format specification and the next itemin the

i nput/output list, if one exists

If an input/output list specifies at |east one item at |east one data
(repeatable) edit descriptor must exist in the format specification. Note
that an enpty format specification (parentheses only) may be used only if
there are no itenms in the input/output list. |In this case one input
record is skipped or one output record containing no characters is
written.

A format specification is interpreted fromleft to right except when a
repeat specification (r) is present. A format item preceded by a repeat
specification is processed as a list of r format specifications or edit
descriptors identical to the format specification or edit descriptor

wi t hout the repeat specification.

To each data (repeatable) edit descriptor interpreted in a formt
specification, there corresponds one item specified by the input/output
list, except that a list itemof type conplex requires the interpretation
of two F, E, D, or G edit descriptors. To each control (nonrepeatable)
edit descriptor there is no corresponding itemspecified by the

i nput/output list, and format control conmunicates information directly
with the record.

Format control operates as follows:

1. If a data (repeatable) edit descriptor is encountered, format control
processes an input/output list itemif there is one, or termnates if
the list is enpty. |If the list item processed is type conplex, two F,

E, D, or G edit descriptors are processed.

2. If a colon edit descriptor is encountered, format control processes an
input/output list itemif there is one, or terminates if the list is
enpty.

3. If a control (nonrepeatable) edit descriptor other than a colon is

encountered, format control processes an input/output list item

4. |If the end of the format specification is reached, format control
termnates if the input/output list is enpty, or reverts to the
begi nning of the format specification term nated by the | ast preceding
ri ght parenthesis. Concerning reversion:

O The reused portion of the format specification nmust contain at
| east one data (repeatable) edit descriptor.

O If reversion is to a parenthesis that is preceded by a repeat
specification, the repeat specification is reused.

O Reversion, of itself, has no effect on the scale factor; on the S,
SP, or SS edit descriptors; or on the BN or BZ edit descriptors.

O If format control reverts, the file is positioned in a nanner
identical to the way it is positioned when a slash edit descriptor
i's processed.

| Copyright IBM Corp. 1987, 1990
122-1

SAA CPI FORTRAN Reference
Interaction between an Input/Output List and a Format Specification

During a read operation, any unprocessed characters of the record are
ski pped whenever the next record is read.

| Copyright IBM Corp. 1987, 1990
12.2-2

SAA CPI FORTRAN Reference
Editing
12.3 Editing

Editing is perforned on fields. A fieldis the part of a record that is
read on input or witten on output when format control processes one |, F,
E, Db G L, A Z, H, or apostrophe edit descriptor. The field width is
the size of the field in characters.

The I, F, E, D, and G edit descriptors are collectively called nuneric
edit descriptors and are used to format integer, real, and conpl ex data.
The general rules that apply to these edit descriptors are:

ad On i nput

- Leadi ng bl anks are not significant. The interpretation of other
bl anks is controlled by the BLANK=char_expr specifier in the OPEN
statement and the BN and BZ edit descriptors. A field of all
bl anks is considered to be zero. Plus signs are optional.

- Wth F, E, D, and G editing, a decimal point appearing in the
input field overrides the portion of an edit descriptor that
speci fies the deci mal point |ocation. The field may have nore
digits than can be represented internally.

ad On out put

- Characters are right-justified inside the field. Leading blanks
are supplied if the editing process produces fewer characters than
the field width. |If the nunmber of characters is greater than the
field width, the entire field is filled with asterisks.

- A negative value is prefixed with a mnus sign. By default, a
positive or zero value is unsigned; however, it may be prefixed
with a plus sign, as controlled by the S, SP, and SS edit
descriptors.

- On OS/ 400 and OS/2, a NaN (not a nunber) is indicated by question
mar ks, plus infinity is indicated by plus signs, and m nus
infinity is indicated by m nus signs.

Conpl ex Editing: A conplex value is a pair of separate real conponents.
Therefore, conplex editing is specified by a pair of F, E, D, or G edit
descriptors. The first edit descriptor edits the real part of the nunber,
and the second edit descriptor edits the imaginary part of the nunber.
The two edit descriptors may be the same or different. One or nore
control (nonrepeatable) edit descriptors may appear between the two edit
descriptors, but no data (repeatable) edit descriptors nmay appear between
them

Subt opi cs
12.3.1 / (Slash) Editing

12.3.2 (Colon) Editing

12.3.3 A (Character) Editing

12. 3.4 Apostrophe Editing

12.3.5 BN (Blank Null) and BZ (Bl ank Zero) Editing

12.3.6 E (Real with Exponent) and D (Doubl e Precision) Editing
12.3.7 F (Real without Exponent) Editing

12.3.8 G (General) Editing

12.3.9 H Editing

12.3.10 | (Integer) Editing

12.3.11 L (Logical) Editing

| Copyright IBM Corp. 1987, 1990
123-1

SAA CPI FORTRAN Reference
Editing
12.3.12 P (Scale Factor) Editing
12.3.13 S, SP, and SS (Sign Control) Editing
12.3.14 T, TL, TR, and X (Positional) Editing
12.3.15 Z (Hexadecimal) Editing

| Copyright IBM Corp. 1987, 1990
12.3-2

SAA CPI FORTRAN Reference
/ (Slash) Editing

12.3.1 / (Slash) Editing

For m

The slash edit descriptor indicates the end of data transfer on the
current record.

On input, when a file is connected for sequential access, the file is
positioned at the beginning of the next record for each slash edit
descri ptor.

On output, when a file is connected for sequential access, a newrecord is
created and the file is positioned to wite at the start of the next
record for each slash edit descriptor.

On input or output, when a file is connected for direct access, for each
slash edit descriptor the record number increases by one, and the file is

positioned at the beginning of the record that has that record nunber.

Exanpl es of Slash Editing on |nput

500 format(f6.2 / 2f6.2)
100 format(id4 / i4 / i4)

| Copyright IBM Corp. 1987, 1990
1231-1

SAA CPI FORTRAN Reference
: (Colon) Editing

12.3.2 : (Colon) Editing

For m

The colon edit descriptor term nates format control (which is discussed on
page 12.2) if there are no nore itens in the input/output list. |If there
are nmore itens in the input/output list when the colon is encountered, the
colon is ignored.

Exanpl e of Col on Editing

10 format(3(:'Array Value',f10.5)/)

| Copyright IBM Corp. 1987, 1990
123.2-1

SAA CPI FORTRAN Reference
A (Character) Editing

12.3.3 A (Character) Editing
For ns:

A
Aw

wher e:

W is an unsigned, nonzero, integer constant that specifies the wi dth of

the character field, including blanks. If wis not specified, the width
of the character field is the length of the correspondi ng i nput/out put
list item

The A edit descriptor directs the editing of character values. The A edit
descriptor nmust correspond to an input/output list itemof type character.

On input, if wis greater than or equal to the length (call it len) of the
i nput/output list item the rightnost |len characters are taken fromthe
input field. |If the specified field width is less than len, the w

characters are left-justified, with len-w trailing blanks added.

On output, if wis greater than len, the output field consists of w1len
bl anks followed by the |l en characters fromthe internal representation.
If wis less than or equal to len, the output field consists of the

|l eftmost w characters fromthe internal representation.

| Copyright IBM Corp. 1987, 1990
1233-1

SAA CPI FORTRAN Reference
Apostrophe Editing
12. 3.4 Apostrophe Editing
For m
Same as a character constant (see page 3.11).
The apostrophe edit descriptor specifies a character string in an output
format specification. The width of the output field is the Iength of the

character constant.

Exanpl es of Apostrophe Editing

50 format('The value is -- ',i2)
10 format(i2,'0o" 'clock")
write(*,"(i2,""' 0" ""'clock"")") itine

| Copyright IBM Corp. 1987, 1990
1234-1

SAA CPI FORTRAN Reference
BN (Blank Null) and BZ (Blank Zero) Editing

12.3.5 BN (Blank Null) and BZ (Bl ank Zero) Editing
For ns:

BN
Bz

The BN and BZ edit descriptors control the interpretation of nonleading
bl anks by subsequently-processed |, F, E, D, and G edit descriptors. BN
and BZ have effect only on input.

BN specifies that blanks in numeric input fields are to be ignored, and
remai ning characters are to be interpreted as though right-justified. A
field of all blanks has a value of zero.

BZ specifies that nonleading blanks in nuneric input fields are to be
interpreted as zeros.

The initial setting for blank interpretation is determ ned by the OPEN
statement and its BLANK=char_expr specifier. (See page 11.5 for syntax.)
The initial setting is determ ned as follows:

O If OPEN is not specified, blank interpretation is system dependent

ad If OPEN is specified but BLANK char_expr is not, blank interpretation
is the sane as if BN editing were specified

O If OPEN is specified and BLANK char _expr is specified, blank
interpretation is the same as if BN editing were specified if the
val ue of char_expr is NULL, or the sane as if BZ editing were
specified if the value of char_expr is ZERO.

The initial setting for blank interpretation takes effect at the start of
execution of a formatted READ statement and stays in effect until a BN or
BZ edit descriptor is encountered or until format control term nates.
Whenever a BN or BZ edit descriptor is encountered, the new setting stays
in effect until another BN or BZ edit descriptor is encountered, or unti
format control term nates.

| Copyright IBM Corp. 1987, 1990
1235-1

SAA CPI FORTRAN Reference
E (Real with Exponent) and D (Double Precision) Editing

12.3.6 E (Real with Exponent) and D (Doubl e Precision) Editing
For ns:

Ew. d
Ew. dEe
Cw. d

wher e:

W is an unsigned, nonzero, integer constant that specifies the wi dth of
the character field.

d is an unsigned integer constant that specifies the nunber of fraction
digits to the right of the deciml point.

e is an unsigned, nonzero, integer constant that specifies the nunber of
digits in the output exponent field. e has no effect on input.

The E and D edit descriptors direct editing between real and conpl ex
nunbers in internal formand their character representations with
exponents. An E or D edit descriptor nust correspond to an input/output
list itemof type real, or to either part of an input/output list item of
type conpl ex.

The formof the input field is the same as for F editing.

The form of the output field for a scale factor of 0 is:

digit_string
is a digit string whose length is the d nost significant digits of the
val ue after rounding.

deci mal _exponent
is a deci mal exponent of one of the following forms (z is a digit):

o o m s C mm m hm m e m m e m mmm Do mm m ot mC e oo mm e m s mm e m e s m e m e e e m e m s e s s mmmm—m—o----- +
| Edit Descriptor | Absol ute Val ue of i Form of Exponent '
' i Exponent 1 H
E S [T '
i Ew.d i | deci mal _exponent| = 1 Exz[1] z[2] '
i 199 i i
B P R o m e !
| Ew.d 199 < i %z[1]z[2] z[3] i
! ! | deci mal _exponent| = ! !
| 999 i i
B o m e e e e e e e aao-- o e e e e e e e e e aoaooo !
I Ew. dEe \ | deci mal _exponent| = \ Exz[1]z[2]...z[€] 1
| 1 (10(e)) - 1 | i
L A o e e e e e e e e oo oo '
i Cw.d i | deci mal _exponent| = 1 Dz[1] z[2] '
| P99 i i
E S [T '

| Copyright IBM Corp. 1987, 1990
1236-1

SAA CPI FORTRAN Reference
E (Real with Exponent) and D (Double Precision) Editing

i Cw.d 199 < Voxz[1]z[2] z[3] '
i | | deci mal _exponent| = ' |
| 999 i i
B +
The scale factor (k; see page 12.3.12) controls deciml normalization. |If
-d < k= 0, the output field contains |k| leading zeros and d - |K]|
significant digits after the decimal point. |If 0 < k < d + 2, the output

field contains k significant digits to the Ieft of the deciml point and d
- k + 1 significant digits to the right of the decimal point. O her
val ues of k are not permtted.

See page 12.3 for general information about numeric editing.

Exanples of E and D Editing on Input: (Assume BN editing is in effect for
bl ank interpretation.)

o o m s C mm m hm m e m m e m mmm Do mm m ot mC e oo mm e m s mm e m e s m e m e e e m e m s e s s mmmm—m—o----- +
I I nput | Format | Value '
[[e '
1 12.34 | e8.4 1 12.34 '
[IR [R E S '
| . 1234e2 | e8.4 1 12.34 '
R e R e R e !
1 2.el0 | el2.6E1 | 2.el0 1
R L i +

B +
| Val ue | Format | CQut put H
[[e '
| 1234.56 | el0.3 i 0.123e+04 '
[IR [R E S '
| 1234.56 | d10.3 i 0.123d+04 '
B +

| Copyright IBM Corp. 1987, 1990
12.36-2

SAA CPI FORTRAN Reference
F (Real without Exponent) Editing
12.3.7 F (Real without Exponent) Editing
For m
Fw. d
wher e
W is an unsigned, nonzero, integer constant that specifies the wi dth of
the character field
d is an unsigned integer constant that specifies the nunber of fraction

digits to the right of the decimal point.

The F edit descriptor directs editing between real and conpl ex nunbers in
internal formand their character representati ons w thout exponents

The F edit descriptor nmust correspond to an input/output list itemof type
real, or to either part of an input/output list itemof type conplex.

The input field for the F edit descriptor consists of, in order:

1. An optional sign.

A string of digits optionally containing a decimal point. |If the
deci mal point is present, it overrides the d specified in the edit
descriptor. If the decimal point is omtted, the rightnost d digits

of the string are interpreted as follow ng the decimal point and
| eadi ng bl anks are converted to zeros if necessary.
3. Optionally, an exponent, having one of the fornms:
0 A signed integer constant.
O E or D followed by zero or nore bl anks, followed by an optionally
signed integer constant. E and D are processed identically.

The output field for the F edit descriptor consists of, in order:

1. Blanks if necessary

2. A mnus sign if the internal value is negative, or an optional plus
sign if the internal value is zero or positive

3. A string of digits that contains a deciml point and represents the
magni tude of the internal value, as nodified by the scale factor in
effect and rounded to d fractional digits

See page 12.3 for general information about numeric editing.

Exanpl es of F Editing on Input: (Assunme BN editing is in effect for blank
interpretation.)

T T +
i I nput i Format | Value

oo oo o m e e oeaoaaooo-

1 -100 1 6.2 1 -1.0

Foee - oo o m e e e ee e

1 2.9 1 6.2 1 2.9

B T Fom e m e o T !
I 4.e+2 ! 6.2 ' 400.0 i
B +

i Val ue i Format | CQutput '

| Copyright IBM Corp. 1987, 1990
123.7-1

SAA CPI FORTRAN Reference
F (Real without Exponent) Editing

_________ e
+1.2 l £8.4 ! 1.2000

_________ e
12345 | 8.3 ! 0.123

| Copyright IBM Corp. 1987, 1990
123.7-2

SAA CPI FORTRAN Reference
G (General) Editing

12.3.8 G (General) Editing
For ns:

Cw. d
Cw. dEe

wher e:

W is an unsigned, nonzero, integer constant that specifies the wi dth of
the character field.

d is an unsigned integer constant that specifies the nunber of fraction
digits to the right of the deciml point.

e is an unsigned, nonzero, integer constant that specifies the nunber of
digits in the output exponent field.

The G edit descriptor is like the E and F edit descriptors except that the
out put format adapts to the mmgnitude of the nunber being edited. Thus
the G edit descriptor provides a choice of output formats wi thout

requiring the magnitude of the nunmbers to be known ahead of tine.

The G edit descriptor nust correspond to an input/output list item of type
real, or to either part of an input/output list itemof type conplex.

G input editing is the same as for F editing.

On output, the nunmber is converted using either E or F editing, depending
on the nunber. The field is padded with blanks on the right as necessary.
Letting N be the magnitude of the number, editing is as follows:

O If N<O0.1 or N= 10 d):

- Cw.d editing is the sane as Ew. d editing
- Cw. dEe editing is the same as Ew dEe editing.

O If N=0.1 and N < 10 d):

- Cw.d editing is the sane as Fw .d' editing, where w =w- 4 and
d" =d - log[1l0]N

- Cw. dEe editing is the sane as Fw .d'" editing, where w =w- (e +
2) and d' = d'" - log[10]N.

See page 12.3 for general information about numeric editing.

Exanpl es of G Editing on Qutput

T T +
1 Val ue i Format | CQutput '
Frommeeean R R T RIS !
| 1234.56 | gl2.5 | 1234.6 '
Fommmm e e R I !
| 123456. | gl2.5 i 0.12346e+06 d
B +

| Copyright IBM Corp. 1987, 1990
12.38-1

SAA CPI FORTRAN Reference
H Editing

12.3.9 H Editing
Form
nHh

wher e:

n is an unsigned, nonzero, integer constant that specifies the number of
characters followi ng the H which make up the output field. Blanks are
included in the count of characters.

h is a string of any of the characters permtted in a character constant

(see page 3.11).

The H edit descriptor specifies a character string and its length in an
out put format specification.

If an H edit descriptor occurs within a character constant and includes an
apostrophe, the apostrophe nust be represented by two consecutive
apostrophes, which are counted as one character in specifying n.

The H edit descriptor must not be used on input.

Exanpl es of H Editing

50 format(16hThe value is -- ,i2)
10 format (i 2, 7ho' cl ock)
wite(*,'(i2,7ho""'clock)"') itine

| Copyright IBM Corp. 1987, 1990
1239-1

SAA CPI FORTRAN Reference
| (Integer) Editing

12.3.10 | (Integer) Editing
For ns:

Iw
Iw. m

wher e

W is an unsigned, nonzero, integer constant that specifies the wi dth of
the character field, including blanks and the optional sign

nis an unsigned integer constant that specifies the m ni mum nunmber of
digits to be written. m nust have a value that is |less than or equal t
w. mis useful on output only and has no effect on input

The | edit descriptor directs editing between integers in internal form

and character representations of integers. The corresponding input/output

list item must be of type integer

The input field for the | edit descriptor nust be an optionally signed
i nteger constant, unless it is all blanks (which is considered to be
zero).

The output field for the | edit descriptor consists of, in order:

Zero or nore |eading bl anks

2. A mnus sign if the internal value is negative, or an optional plus
sign if the internal value is zero or positive

3. The magnitude in the form of

O If mis not specified, an unsigned integer constant w thout
| eadi ng zeros

O If mis specified, an unsigned integer constant of at |least m

digits and, if necessary, with |leading zeros. |If the interna
value and n are both zero, blanks are written.

See page 12.3 for general information about numeric editing.

Exanpl es of | Editing on Input: (Assune BN editing is in effect for blank

interpretation.)

e e e e e eeeeeeeeece-ssmecesmemememeecececececececececeeeeceeeeeeemmmemmmemee ... ———————
i I nput | Format | Value

[[e
I -123 |16 | -123

Frommeeean R R T RIS
| 123456 | i7.5 | 123456

Fommmm e e R I
1 1234 |14 | 1234

o e m e m e e m e mmmm o mm o m = =

Exanpl es of | Editing on Qutput

e e e e e eeeeeeeeece-ssmecesmemememeecececececececececeeeeceeeeeeemmmemmmemee ... ———————
| Val ue | Format | CQutput

[[e
Po-12 1 i7.6 | -000012

[IR [R E S

| Copyright IBM Corp. 1987, 1990
12.3.10-1

(]

SAA CPI FORTRAN Reference
| (Integer) Editing

| Copyright IBM Corp. 1987, 1990
12.3.10-2

SAA CPI FORTRAN Reference
L (Logical) Editing
12.3.11 L (Logical) Editing
For m
Lw

wher e:

W is an unsigned, nonzero, integer constant that specifies the wi dth of
the character field, including blanks.

The L edit descriptor directs editing between |ogical values in internal
formand their character representations. The L edit descriptor nust
correspond to an input/output list itemof type |ogical.

The input field consists of optional blanks, followed by an optional

deci mal point, followed by a T for true or an F for false. Any characters
following the T or F are accepted on input but are not acted upon;
therefore, the strings . TRUE. and .FALSE. are acceptable input forns.

The output field consists of T or F preceded by w-1 bl anks.

Exanpl es of L Editing on |nput

B T T R L T IR +
I I nput | Format | Value !
Fommmaaaas Feommmaeaa s L S !
1ot 1 L4 | true !
Fom e e e o Fom e e e o T '
i .false. | L7 1 fal se 1
o o m s C mm m hm m e m m e m mmm Do mm m ot mC e oo mm e m s mm e m e s m e m e e e m e m s e s s mmmm—m—o----- +

T T T +
1 Val ue i Format | CQutput 1
Fommmm e e R I !
' true L L4 bT i
B T Fom e m e o T !
i fal se 1 L1 I F !
B +

| Copyright IBM Corp. 1987, 1990
12.311-1

SAA CPI FORTRAN Reference
P (Scale Factor) Editing
12.3.12 P (Scale Factor) Editing
For m
kP

wher e

k is the scale factor, an optionally-signed integer constant representing
a power of ten.

The scale factor, k, applies to all subsequently-processed F, E, D, and G

edit descriptors until another scale factor is encountered or until format

control term nates. The value of k is zero at the beginning of execution
of each input/output statement.

On input, when an input field using an F, E, D, or G edit descriptor
contains an exponent, the scale factor is ignored. O herw se, the
internal value equals the external value nultiplied by 10(-Kk).

On out put:

O Wth F editing, the external value equals the internal valu
mul tiplied by 10(Kk).

0O Wth E and D editing, the external decimal field is nultiplied b
10(k). The exponent is then reduced by k.

O Wth G editing, fields are not affected by the scale factor unles
they are outside the range that permts the use of F editing. If the
use of E editing is required, the scale factor has the same effect as
with E output editing

Exanpl es of P Editing on |nput

o e m e mm ==
i I nput 1 For mat i Val ue

e ommmme e L
| 98.765 | 3pf8.6 1 0.098765

B L T o m m o m e e e e o e meao-
| 98.765 | -3pf8.6 | 98765.

L L T, o m m o e memao
| .98765e+2} 3pfl10.5 | .98765e+2

e e e e e eeeeeeeeece-ssmecesmemememeecececececececececeeeeceeeeeeemmmemmmemee ... ———————

o e m e mm ==
1 Val ue i Format 1 Qut put

e ommmme e L
1 12.34 1 2pf7.2 | 1234.00

R e R R T
1 12.34 | -2pf6.4 | 0.1234

B L T o m m o m e e e e o e meao-
I 12.34 | 2pel0.3 | 12.34e+00

e e e e e eeeeeeeeece-ssmecesmemememeecececececececececeeeeceeeeeeemmmemmmemee ... ———————

| Copyright IBM Corp. 1987, 1990
12.312-1

SAA CPI FORTRAN Reference
S, SP, and SS (Sign Control) Editing

12.3.13 S, SP, and SS (Sign Control) Editing

For ns:
S
SP
SS

The S, SP, and SS edit descriptors control the output of plus signs by all
subsequent | y-processed |, F, E, D, and G edit descriptors until another S,
SP, or SS edit descriptor is encountered or until format control

term nates.

S and SS specify that plus signs are not to be witten. (They produce
identical results.) SP specifies that plus signs are to be witten.

| Copyright IBM Corp. 1987, 1990
12.3.13-1

SAA CPI FORTRAN Reference
T, TL, TR, and X (Positional) Editing

12.3.14 T, TL, TR, and X (Positional) Editing
For ns:

Tc
TLc
TRc
nX

wher e:

c is an unsigned, nonzero, integer constant.
n is an unsigned, nonzero, integer constant.

The T, TL, TR, and X edit descriptors specify the position at which the
transfer of the next character to or froma record is to start. This
position is:

O For ¢, the cth character position

O For T c, ¢ characters backward from the current position. |If the
value of c is greater than or equal to the current position, then the
next character accessed is position one of the record.

ad For T c, c characters forward fromthe current position.
O For nX, n characters forward fromthe current position.
The TR and X edit descriptors give identical results.

On input, a TR or X edit descriptor may specify a position beyond the |ast
character of the record if no characters are transferred fromthat
posi tion.

On output, a T, TL, TR, or X edit descriptor does not by itself cause
characters to be transferred. |f characters are transferred to positions
at or after the position specified by the edit descriptor, positions

ski pped and not previously filled are filled with blanks. The result is
the same as if the entire record were initially filled with blanks.

On output, a T, TL, TR, or X edit descriptor may result in repositioning
such that subsequent editing with other edit descriptors causes character

repl acement .

Exampl es of T, TL, and X Editing on | nput

150 format(i4,t30,i4)
200 fornmt(f6.2,5x,5(i4,TL4))

Exanmples of T, TL, TR, and X Editing on Output

50 format('Colum 1',65x,"'Colum 14',tr2,' Colum 25")
100 format('aaaaa', TL2,' bbbbb',5X,"' ccccc', T10, ' ddddd')

| Copyright IBM Corp. 1987, 1990
12.314-1

SAA CPI FORTRAN Reference
Z (Hexadecimal) Editing

12.3.15 Z (Hexadecimal) Editing
For m

w
wher e

W is an unsigned, nonzero, integer constant that specifies the wi dth of
the character field, including blanks

The Z edit descriptor directs editing between values of any type in
internal formand their hexadecimal representation. (A hexadecimal digit
is one of 0-9 or A-F.)

On input, w hexadecimal digits are edited and formthe interna
representation for the value of the input list item The hexadeci mal
digits in the input field correspond to the rightnost hexadecimal digits
of the internal representation of the value assigned to the input list
item

The output field contains w hexadecimal digits, including |eading zeros
The digits in the output field correspond to the rightnost w hexadeci ma
digits of the internal representation

Note that the editing of character data for input or output does not inply

bl ank padding as it does for A editing

Exanpl es of Z Editing on |nput

e e e e e eeeeeeeeece-ssmecesmemememeecececececececececeeeeceeeeeeemmmemmmemee ... ———————
i I nput i Format | Val ue

[IR [T T
i 0C 1 z2 112

Feemm e Femmm e e e e e e e e e e e eeeeeeceeeeceeeececeeeaeaaan
AR R | z4 | 32767

o e mmmm o m ==

o e m = =
| Val ue i For mat 1 Qut put

L L T, o m m o e memao
112 | z4 | 000C

[IR [T T
Po-1 | z8 | FFFFFFFF
S

| Copyright IBM Corp. 1987, 1990
12.3.15-1

SAA CPI FORTRAN Reference
List-Directed Formatting

12. 4 List-Directed Formatting

Wth list-directed formatting, editing is controlled by the types and
Il engths of the data being read or witten. An asterisk format identifier
specifies list-directed formatting. For exanple:

write(6,*) totall, total2

The characters in a formatted record processed under |ist-directed
formatting constitute a sequence of val ues separated by val ue separators:

O A val ue has the form of a constant or null value

O A value separator is a comm, slash, or blank. A comma or slash nay
be preceded and foll owed by one or nore blanks. Blanks in
list-directed input records are significant.

Subt opi cs
12.4.1 List-Directed | nput
12.4.2 List-Directed Qutput

| Copyright IBM Corp. 1987, 1990
124-1

SAA CPI FORTRAN Reference
List-Directed Input

12.4.1 List-Directed Input

Input list itens in a list-directed READ statenent are defined by
correspondi ng values in records. The form of each input value nust be
acceptable for the type of the input list item An input value is any of
the foll ow ng:

O A val ue having the form of

- const ant

- r*constant, where r is an unsigned, nonzero, integer constant.
This formis equivalent to r successive appearances of the
const ant .

constant is an integer, real, double precision, conplex, |logical, or
character constant.

O A null value, represented by

- Two successive commas, with zero or nore intervening blanks
- A commm followed by a slash, with zero or nore intervening bl anks
- An initial comm in the record, preceded by zero or nore bl anks.

More than one null value nmay be represented by the formr*, wherer is
an unsigned integer constant. This formis equivalent to r successive
nul I val ues.

A character value may be continued in as many records as required.
The end of a record:

O Has the sane effect as a blank unless the blank is within a characte
val ue

O Does not cause insertion of a blank or any other character in
character val ue

O Mist not separate two apostrophes representing an apostrophe

Two or nmore consecutive blanks are treated as a single blank unless the
bl anks are within a character val ue.

A null value has no effect on the definition status of the corresponding
input list item

A slash marks the end of the input list, and list-directed formatting is
termnated. |If additional itenms remain in the input Iist when a slash is
encountered, it is as if null values had been specified for those itens.

| Copyright IBM Corp. 1987, 1990
124.1-1

SAA CPI FORTRAN Reference
List-Directed Output

12.4.2 List-Directed Qutput

List-directed WRITE and PRINT statenents produce values in the order they
appear in an output list. Values are witten in a formthat is reasonable
for the data type of each output list item

Logi cal values are witten as T for the value true and F for the val ue
fal se.

Character values are witten as if the A edit descriptor were in effect.
Character values witten with list-directed output formatting cannot be
read with list-directed input formatti ng because apostrophes are not
written.

Sl ashes, as val ue separators, and null values are not witten.

| Copyright IBM Corp. 1987, 1990
124.2-1

SAA CPI FORTRAN Reference
Chapter 13. INCLUDE Compiler Directive

13.0 Chapter 13. | NCLUDE Conpiler Directive

o m e e e e e e e e e e e e +
I WS | VvV | 0OS/400 | OS/2 |
o e - oo e m e e e o e 1
X X X 4 X
e +
R e e +
| |
1 1
' ---1INCLUDE--char _constant----------------mmm oo O |
| I
| I
| |
o o m o e o e e o e —o +

char _const ant
is a character constant whose value, after trailing blanks have been
renoved, is a system dependent file specifier naming the file to be
i ncl uded.

I NCLUDE is a conpiler directive. It directs the conpiler to read source
statements froman included file, which is a file different fromthe one
containing the I NCLUDE conpiler directive.

When the conpiler encounters an | NCLUDE conpiler directive, it suspends
processing of the current file and continues with the first line of the
included file. When the conpiler reaches the end of the included file, it
continues processing with the line followi ng the I NCLUDE conpil er
directive.

An | NCLUDE conpiler directive may appear anywhere in a FORTRAN source
file.

An | NCLUDE conpiler directive nmust not be continued.

An included file may contain comment |ines and conpl ete FORTRAN
statenents, but nmust not contain other |INCLUDE conpiler directives.

| Copyright IBM Corp. 1987, 1990
13.0-1

SAA CPI FORTRAN Reference
Appendix A. Intrinsic Functions

A.0 Appendix A. Intrinsic Functions

Intrinsic functions are supplied by the FORTRAN processor. This appendix
describes the intrinsic functions in Systens Application Architecture
FORTRAN.

Some intrinsic functions may be referenced by a specific name, some by a
generic name, and sone by both. A specific name requires a specific
argument type and produces a result of a specific type. A generic nane
does not require a specific argunment type and usually produces a result of
the same type as that of the argunment. Generic nanmes sinplify the
referencing of intrinsic functions.

o e mm e e mm e e mm e e e m e m e m e om e omm e e m e m e m e e e mm e m e mm o mm o m -
I Intrinsic ! ! I Definition I No. of Argu- I Type of !
unction neric Name ecific Nanme ee Not es ment s rgument
i F i i Generic N i Specific N i (See N i i Arg i
B T B T T T T T +-
i Conversion to | INT Vo iy = sgn(x) O 1 i I NTEGER*4 1
| type integer ' 1 INT VoL x]] i i REAL*4 REAL*4 |
' H i TFEX i ! | REAL*8 !
' H i 1 DI NT | ! | COVPLEX*8 !
1 I [I 1 | I
1 1 I I I 1 1
: : : |y = sgn : RS :
| P P | (re(2)) O | : :
: : ! [lre(2)]] : | REAL*4 :
| : | HFIX : : : :
1 1 1 | e e e e e oo | 1 I
I 1 1 1 1 I 1
| 1 1 1 1] I
I 1 1 1 1 1 1
i i i i = sgn(x) O | i i
i i i v LIx]] i i i
T T L T L e L +-
| Conversion to | REAL i REAL FLOAT -- | y =X 1 i | NTEGER* 4 1
| type real ' i SNGL -- DREAL | 1 i | NTEGER* 4 1
' ' ' ! ! | REAL*4 REAL*8 |
' H H 1 ! | COVPLEX*8 !
i ' 1 1y =re(z) ' i COMPLEX* 16 '
i i i i i i i
TR TR L T T o R LT T LT TS +-
I Conversion to | DBLE A ! 11 I | NTEGER* 4 !
| type double ' V- H 1 | REAL*4 REAL*8 |
| precision ' V- ' 1 i\ COVPLEX*8 '
i i P iy = re(z) i i i
B T B T T T T T +-
i Conversion to | CMPLX 1o 1y =x +1i0, i 1 or 2 i | NTEGER* 4 i
| type conpl ex H H— | one argunent 1 | REAL*4 REAL*8 |
i i P Py = x[1] + i i COMPLEX*8 i
i i P PIXx[2], two i i i
: i i | arguments ! Do !
i P P i i i i
: : ! Ly =z ! | REAL*8 :
: : | DCVPLX : : : :
1 1 1 | e e e e e oo | 1 I
I 1 1 1 1 I 1
| 1 1 1 1] I
I 1 1 1 1 1 1
i i i Py =x +1i0, i i i
' 1 ! | one argunent ' ! |
i i i Py = x[1] + i i i
i i i pix[2], two i i i
i i i i arguments i i i
L L L T L F +-
i Truncation 1 AINT i AINT DI NT iy = sgn(x) O 1 | REAL*4 REAL*8 |

| Copyright IBM Corp. 1987, 1990
AO-1

SAA CPI FORTRAN Reference

Intrinsic Functions

Appendix A.

[Ix]]

1
I
T

REAL*4 REAL*8

1

sgn(x) O

y:

ANI NT DNI NT

' ANI NT !

Near est whol e

<

517,

[]x-

ST

REAL*4 REAL*8

sgn(x) O

y:

NI NT | DNI NT i

NI NT

Near est

i nt eger

S

| NTEGER* 4

=[x

y

| ABS ABS DABS
CABS CDABS

ABS

Absol ute val ue

REAL*4 REAL*8

COVPLEX* 8

COVPLEX* 16

sup 2

(re(2)

+imz)

sup

<1/ 2>

o

| NTEGER* 4

y = x[1]

MOD AMOD DMOD

MOD

Rerei nderi ng

REAL*4 REAL*8 |
I
1

O

[x[1]/x[2]]
x[2]

S

| NTEGER* 4

sgn(x[2]) 1 2
O [x[1]]

S

y

I SI GN SI GN

DSI GN

SI GN

Transfer of
sign

REAL*4 REAL*8 |

| NTEGER* 4

vy = x[1]

I DIM DI M DDI M

DI M

Positive

REAL*4 REAL*8

>

x[1]

x[2],
x[2]

di fference

y =0, x[1]
= x[2]

o

REAL*4

2

O

y = x[1]

DPROD

Doubl e

precision
product

S

| NTEGER* 4

max(x[1],

y:

MAXO AMAX1
DMAX1

Choosi ng
| ar gest

REAL*4 REAL*8 |
|
|
1
I
|
|
|
|

val ue

| NTEGER* 4

REAL* 4

AMAXO MAX1

o

| NTEGER* 4

m n(x[1]

y:

M NO AM N1

M N !

Choosi ng

REAL*4 REAL*8

REAL* 4

x[n])

smal | est val ue

S

COVPLEX* 8

1

y =imz)

Al MAG DI MAG

I MAG

| magi nary part
of a conpl ex

COVPLEX* 16

Copyright IBM Corp. 1987, 1990

A.0-2

SAA CPI FORTRAN Reference

Intrinsic Functions

Appendix A.

ar gument

T

COVPLEX* 8

y = z(*)

CONJG DCONJG '

CONJG

COVPLEX* 16

if z=a
then z(*)

ib,

conj ugate

S

REAL*4 REAL*8
COVPLEX* 8

SQRT DSQRT

SQRT

Squar e root

<1/ 2>

CSQRT CDSQRT

COVPLEX* 16

<1/ 2>

e

REAL*4 REAL*8

COVPLEX* 8

1

'y = e sup x |

EXP DEXP CEXP
CDEXP

EXP

Exponenti al

COVPLEX* 16

T

REAL*4 REAL*8

COVPLEX* 8

1

logle] (x), i

y =

ALOG DLOG CLOG |

LOG

Nat ur al

logle] (2),

| ogarithm

0+1i0

o

z &ne.

REAL*4 REAL*8 |

1

| og[10] x, |

y:

ALOGL0 DLOGL0

LOG10

Conmmon

| ogarithm

T

REAL*4 REAL*8
COVPLEX* 8

si n(x)

y:

SIN DSIN CSIN |

CDSI N

SIN

Si ne

COVPLEX* 16

sin(z)

y:

S

REAL*4 REAL*8
COVPLEX* 8

1

cos(x)

y:

COS DCOS Ccos |

COVPLEX* 16

cos(z)

y:

o

REAL*4 REAL*8

T

1

tan(x)

y:

TAN DTAN

TAN !

Tangent

REAL*4 REAL*8

1

= arcsin(x) |

y

ASI N DASI N

ASI N

Arcsi ne

.12
.12

&pi
T T T T T T T T T T e

&pi

REAL*4 REAL*8

1

arccos(x) |

y =

ACOS DACOS

ACOS !

Arccosi ne

y = &pi.

g

REAL*4 REAL*8 |
I
I
|
i
|
|
|
|
|
|
|
I
|
I
|
|
|
I
|
I

1

arctan(x) |

y:

ATAN DATAN

ATAN

Ar ct angent

REAL*4 REAL*8

ATAN2 DATAN2

y such that

siny = x'
sub 2 '/ (x'
sub 1 "'

sup 2 |

ATAN2

Copyright IBM Corp. 1987, 1990

A0-3

SAA CPI FORTRAN Reference

Intrinsic Functions

Appendix A.

- - N
. < . o o . 1]
= [} = [}
N »n . SN » . c >
X 0 0 3
o . . > — o . c Vv
S5 o~ - -~ - 35~ g —
w . - 0. . 0. 3N .
o —_ —_
- N A OHd H . N A A X o
< ~N x N 5]
o — o o Q - X T P
+ S5 d S5 3+ 5 A c o
- oV . »n n.-. n V © O o3

T

REAL*4 REAL*8

e
X >>
2

175. 366

sup <-
g

SI NH DSI NH

SI NH

Hyperbolic

REAL*4 REAL*8

e
"X >>

175. 366

S

sup
sup <-

CGOsH

Hyperbolic

o)

*

3

@

<

3

3

@

—
. o o

- O AN S S

v - AN ;)

Voo x ..

o oA

- O A
X .V .

n.v + %

~2 a0 .

5 3> % .
n wn o . v

I

zZ

m

[a)]

T

P4

<

T

T

Z

<

T

Hyperbolic
t angent

o

! CHARACTER* 1

1

Position of x
in the

| CHAR

Conversion to

type integer

collating

sequence

S

| NTEGER* 4

Char act er

CHAR

Conversion to

col I ating

position of
sequence

correspondi ng
to
X in the

type character
1
1
I
I
1
1
1
1
1
1

o

CHARACTER

e

Length of x

LEN

Length

CHARACTER

Locati on of

I NDEX

I ndex of a

substring x[2]

in

substring

string

x[1]

T

CHARACTER

2

= x[2]

Conpari son

x[1]
is ASCI I

LGE

Lexically

greater than
equal '

or

Copyright IBM Corp. 1987, 1990

AO-4

SAA CPI FORTRAN Reference
Appendix A. Intrinsic Functions

o R T TSR o T R +-
| Lexically ' | LGT ox[1] > x[2] 12 i CHARACTER 1
| greater than ! ! ' Conpari son ! ' |
' ! ! | is ASClI ' | !
T T L T L e L +-
| Lexically less | | LLE o x[1] = x[2] 12 i CHARACTER 1
| than or equal | 1 i Conmpari son 1 1 1
' H | | is ASClI ' H !
Fem e e e e e e aa e s L E Fem e e e e e aaaa Fem e e e e e e e e a [+-
| Lexically less | 1 LLT o xX[1] < x[2] 12 | CHARACTER |
| than i H | Compari son | ' H
' | | | is ASClI ' i |
o R T TSR o T R +-
i I'nclusive or 1 1 TOR by = 12 i | NTEGER* 4 '
| i i poor(x[1],x[2]) | i i
B T B T T T T T +-
i Logi cal | i\ | AND by = 12 | | NTEGER* 4 !
i product | i voand(x[1], x[2]) | i i
T T L T L e L +-
i Logi cal ' i NOT iy = not(x[1]) | 1 i | NTEGER* 4 1
I COTTp| ermnt 1 1 1 I 1 1
1 1 I I I 1 1
Fem e e e e e e aa e s L E Fem e e e e e aaaa Fem e e e e e e e e a [+-
i Exclusive or 1 1 1 EOR Ly = 12 i | NTEGER* 4 '
i i i voxor (x[1],x[2]) i i
TR TR L T T o R LT T LT TS +-
i Shift H i | SHFT tox[1] is 12 i | NTEGER* 4 1
| operations ! ! | shifted by ! ! !
| i i i x[2] bits to | i i
| i i i right | i i
| | | b it x[2] <0 i i
' ! ' i or to left if | ! |
| i | v x[2] >0, i i i
| | | i Wwhere [x[2]] | i i
: : : | = 32 : : :
Fem e e e e e e aa e s L E Fem e e e e e aaaa Fem e e e e e e e e a [+-
| Bit test H | BTEST 1y = true if . i | NTEGER* 4 |
i i i i bit x[2] of i i i
i i i i x[1] =1 or i i i
' H 1 1 false if bit | H 1
| | | v x[2] of x[1] =] i i
| i i 1 0 i i i
B T B T T T T T +-
I Bit set | ! | BSET by = 12 | | NTEGER* 4 !
| i i i bitset(x[1],x[2}) i i
' ! ! | sets bit x[2] | ' 1
| i i i of x[1] to 1| i i
Fem e e e e e e aa e s L E Fem e e e e e aaaa Fem e e e e e e e e a [+-
Bit clear | BCLR y = 12 | NTEGER* 4

sets bit x[2] |
of x[1] to O |

1

1

I bitclear(x[1],x}2])
I

I

1

1

Not es about Definitions:

Definitions use fam liar mathematical function names, which have their
mat hemat i cal meani ngs or are defined bel ow.

The bits in bit-manipulation functi on BTEST, |BSET, and |BCLR are nunbered

| Copyright IBM Corp. 1987, 1990
AO0-5

SAA CPI FORTRAN Reference
Appendix A. Intrinsic Functions
fromright to left, beginning at zero

The result of a function of type conplex is the principal value.

Meani ngs of synbol s:

X denotes a single argunent.
x[i] denotes the i-th argunent when a function accepts nmore than one
argunent .

[x] denotes the integer part of the nunber x.
sgn(x) is +1 if x = 0 or -1 if x < 0.

y denotes a function result.

z denotes a conpl ex argument.

| Copyright IBM Corp. 1987, 1990
A0-6

SAA CPI FORTRAN Reference
Appendix B. Compiler Considerations
B. 0 Appendi x B. Conpiler Considerations

The following conpiler options affect your program s conformance to
Systens Application Architecture:

O For MVS and VM (VS FORTRAN Version 2)

Use the OCSTATUS execution option.
| For OS/ 400 (FORTRAN/ 400)

Do not use the *F66, *SHORTI, and *NOSAVE conpil er options.
O For OS/2 (FORTRAN 2)

Do not use the /F and /| conpiler options.

| Copyright IBM Corp. 1987, 1990
B.O-1

SAA CPI FORTRAN Reference
Summary of Changes

CHANGES Summary of Changes

This edition adds | BM FORTRAN 400 (Program Nunmber 5730-FT1) as the product
whi ch inplenents SAA CPl FORTRAN in the OS/ 400 environment. Text that
descri bes the new FORTRAN 400 support is indicated by a vertical bar to
the left of the changes.

In addition, mnor technical and editorial changes have been made
t hr oughout .

| Copyright IBM Corp. 1987, 1990
CHANGES - 1

SAA CPI FORTRAN Reference
Index

A
A (character) editing 12.3.3
ABS intrinsic function A. 0
ACOS intrinsic function A0
actual argument 10.8

speci fying procedure name as 6.7
actual array 4.2.2
adj ustable array 4.2.2

declarator 4.2.2
adj ustabl e di mension 4.2.2
Al MAG intrinsic function A O
AINT intrinsic function A0
al phanunmeric character 2.1
alternate entry point 10.6
alternate return

point 10.7

specifier 10.7 10.8
.AND. operator 5.4
ANINT intrinsic function A O
apostrophe editing 12.3.4
argunents 10.8 to 10.8.6
arithnmetic assignment statenent 8.1
arithnetic constant

COWPLEX*16 3.8

COWPLEX*8 3.7

doubl e precision 3.6.1

integer 3.4

real 3.5.1
arithmetic constant expression 5.1.1
arithmetic expression 5.1
arithmetic |F statement 9.4
arithmetic operators 5.1
arithnetic relational expression 5.3.1
array 4.2 to 4.2.6

as dummy argunent 10.8.4
array declarator 4.2.1
array element 4.2.5
ASCI'| coded character set

determ nes collating sequence 2.1
ASIN intrinsic function A0
ASSI GN st atenment 8.3
assigned GO TO statenent 9.3
assignnent statenents 8.1 to 8.4
association 4.6

argunent 10.8.1

common 6.3.1

entry 10.3.3

equi val ence 6.2
assumed-si ze array declarator 4.2.2
asterisk as dumry argument 10.8.6
ATAN intrinsic function A0
ATAN2 intrinsic function A 0
B
BACKSPACE statement 11.8
bit-mani pul ation intrinsic functions A. 0
bl ank (BN and BZ) editing 12.3.5
bl ank character, significance of 2.1
bl ank common bl ock 6.3
bl ank editing 12.3.5
bl ank interpretation during formatting

| Copyright IBM Corp. 1987, 1990
INDEX - 1

SAA CPI FORTRAN Reference
Index
inquiring about default 11.7
setting 12.3.5
BLOCK DATA statenent 10.9
bl ock data subprogram 10.9
bl ock IF statement 9.6
BN (blank null) editing 12.3.5
bound, dinension 4.2.1
BTEST intrinsic function A 0
BZ (bl ank zero) editing 12.3.5
C
CALL statement 10.5
CHAR intrinsic function A O
character
assi gnnment statenent 8.4
constant 3.11
constant expression 5.2.1
data type 3.11
editing 12.3.3
expression 5.2
format specification 12.1.3
rel ati onal expression 5.3.2
set 2.1
substring 4.3
CHARACTER type statement 6.4
CLOSE statenment 11.6
CMPLX intrinsic function A0
collating sequence 2.1
colon (:) editing 12.3.2
colum-maj or order 4.2.6
colums 2.3
comment line 2.3
order within programunit 2.6
commn block 6.3 to 6.3.5
COVMMON st atenent 6.3
comuni cati ng between program units
usi ng arguments 10.8
usi ng common bl ocks 6.3
conpi l er considerations B.0O
conpil er directive, |NCLUDE 13.0
conpl ex const ant
*16 3.8
*8 3.7
conplex editing 12.3
COWPLEX type statenent 6.4
COVPLEX*16 type 3.8
COWPLEX*8 type 3.7
conputed GO TO statenent 9.2
CONJG intrinsic function A 0O
connection, file/unit 11.3.1
inquiring about 11.7
const ant
arithmetic
COWPLEX*16 3.8
COWPLEX*8 3.7
doubl e precision 3.6.1
i nteger 3.4
real 3.5.1
character 3.11
how data type determ ned 3.2
| ogical 3.10

| Copyright IBM Corp. 1987, 1990
INDEX - 2

SAA CPI FORTRAN Reference
Index
constant array declarator 4.2.2
constant expression
arithmetic 5.1.1
character 5.2.1
integer 5.1.1
logical 5.4.2
constant, naned 6.6
construct, IF 9.6
continuation line 2.3
CONTI NUE statenment 9.8
control (nonrepeatable) edit descriptors, list of 12.1.1
control statements, list of 2.4
control, blank and zero 12.3.5
control, format 12.2
control, transfer of 2.7
conversion rules, data type 5.1.2
COS intrinsic function A. 0
COSH intrinsic function A0
current record 11.2.1
D
D (doubl e precision) editing 12.3.6
data (repeatable) edit descriptors, list of 12.1.1
DATA statenment 7.0
data type 3.0 to 3.11
data type conversion rules 5.1.2
DBLE intrinsic function A0
DCONJG intrinsic function A. 0
decl arator, array 4.2.1
ki nds of 4.2.2
declarator, dinension 4.2.1
default typing 3.2
defined status 4.4
definition status 4.4
denormal i zed val ues, range of
for REAL*4 type 3.5
for REAL*8 type 3.6
descriptors, edit

control (nonrepeatable), list of 12.1.1
data (repeatable), list of 12.1.1
numeric 12.3

digit 2.1

DIMintrinsic function A .0
DI MAG intrinsic function A0
di mensi on bound expression 4.2.1
di mensi on declarator 4.2.1
DI MENSI ON st atenent 6.1
dimensions 4.2.1 to 4.2.4
direct access 11.2.2
direct access input/output statenment 11.4.1
directive, |INCLUDE conpiler 13.0
di sconnection, file/unit 11.3.1
DO | oop 9.7
DO statenment 9.7
doubl e precision constant 3.6.1
doubl e precision data type 3.6
doubl e precision editing 12.3.6
DOUBLE PRECI SI ON type statement 6.4
DPROD intrinsic function A. 0
dummy argunment 10. 8
array as 10.8.4

| Copyright IBM Corp. 1987, 1990
INDEX - 3

SAA CPI FORTRAN Reference
Index
asterisk as 10.8.6
procedure as 10.8.5
statement function 10.3.2
vari able as 10.8.3
dummy array 4.2.2
dummy procedure 10.8.5
E
E (real with exponent) editing 12.3.6
EBCDI C coded character set
determ nes collating sequence 2.1
edit descriptors 12.1
control (nonrepeatable), list of 12.1.1
data (repeatable), list of 12.1.1
numeric 12.3
editing 12.3
(colon) 12.3.2
/ (slash) 12.3.1
A (character) 12.3.3
apostrophe 12.3.4
BN (bl ank null) 12.3.5
BZ (bl ank zero) 12.3.5
complex 12.3
D (doubl e precision) 12.3.6
E (real with exponent) 12.3.6
F (real without exponent) 12.3.7
G (general) 12.3.8
H (character) 12.3.9
I (integer) 12.3.10
L (logical) 12.3.11
P (scale factor) 12.3.12
S (sign control) 12.3.13
SP (sign control) 12.3.13
SS (sign control) 12.3.13
T (positional) 12.3.14
TL (positional) 12.3.14
TR (positional) 12.3.14
X (positional) 12.3.14
Z (hexadecimal) 12.3.15
ELSE | F statement 9.6
ELSE statenment 9.6
END | F statement 9.6
END statenent 9.11
continuation restriction 2.3
end-of -file specifier 11.4
endfile record 11.1.3
ENDFI LE statenment 11.8
entry association 10.3.3
entry name 10.6
ENTRY st atement 10.6
restriction on order 2.6
.EQ operator 5.3.1
equi val ence
association 6.2
restriction on conmon and 6.3.5
EQUI VALENCE st at ement 6. 2
. EQV. operator 5.4
error specifier 11.4
execut abl e program 10.1
executabl e statenments, list of 2.4
execution sequence, normal 2.7

| Copyright IBM Corp. 1987, 1990
INDEX - 4

SAA CPI FORTRAN Reference
Index
exi stence, file
inquiring about 11.7
of external file 11.2.1
of internal file 11.2.3
EXP intrinsic function A 0
explicit typing 3.2
exponent
doubl e precision 3.6.1
real 3.5.1
expression
arithmetic 5.1
character 5.2
di mensi on bound 4.2.1
logical 5.4
relational 5.3
subscript 4.2.5
substring 4.3
external file 11.2.1
external function 10.3.3
external procedure 10.1
EXTERNAL statement 6.7
external unit identifier 11.4
inquiring about 11.7
F
F (real without exponent) editing 12.3.7
factor, scale 12.3.12
field 12.3
field width 12.3
file 11.2
file existence 11.2.1
of external file 11.2.1
of internal file 11.2.3
file position 11.2.1
aft er BACKSPACE, ENDFILE, or REW ND statenent 11.8
before and after data transfer 11.4.3
file positioning statenents 11.8
file specifier 11.5
format codes
See edit descriptors
format control 12.2
format identifier 11.4
format specification 12.1.1
character 12.1.3
in FORMAT statenment 12.1.2
interaction with input/output list 12.2
format specifier 11.4
FORMAT statenent 12.1.2
format-directed formatting 12.1 to 12.3.15
formatted input/output statenent 11.4.1
formatted record 11.1.1
formatti ng
format-directed 12.1 to 12.3.15
list-directed 12.4 to 12.4.2
function 10.3
external 10.3.3
intrinsic A.O
statement 10. 3.2
function reference 10.3.1
FUNCTI ON st atenent 10.3.3
function subprogram 10. 3.3

| Copyright IBM Corp. 1987, 1990
INDEX - 5

SAA CPI FORTRAN Reference
Index

function value 10.3.1
G
G (general) editing 12.3.8
. GE. operator 5.3.1
general (G editing 12.3.8
generic nane of intrinsic function A .0
gl obal scope 2.2.1
GO TO statenents 9.1 to 9.3
. GI. operator 5.3.1
H
H editing 12.3.9
hexadeci mal (Z) editing 12.3.15
HFI X intrinsic function A0
|
| (integer) editing 12.3.10
IAND intrinsic function A0
IBCLR intrinsic function A .0
I BSET intrinsic function A .0
ICHAR intrinsic function A0
identifier

external unit 11.4

inquiring about 11.7

format 11.4

internal file 11.4
IEOR intrinsic function A0
I F construct 9.6
I F statenment

arithmetic 9.4

bl ock 9.6

|l ogical 9.5
IMAG intrinsic function A0
IMPLICIT statenent 6.5
implicit typing 3.2
i mplied-DO |ist

in a DATA statenent 7.0

in a READ, WRITE, or PRINT statenment 11.4.4
inplied-DO variable 7.0
| NCLUDE conpiler directive 13.0
incrementation processing 9.7.7
indeterm nate file position 11.2.1
INDEX intrinsic function A O
infinity

as a REAL*4 value 3.5

as a REAL*8 value 3.6

how indicated with numeric output editing 12.3
nherited | ength

by a dumry argunment 10.8.2

by a named constant 6.6
nitial line 2.3
nitial point of a file 11.2.1
nitial value, declaring 7.0
nput/output list 11.4

interaction with format specification 12.2
nput/out put statement categories 11.4.1
nput/out put statenents, list of 2.4
nput / out put status specifier 11.4
I NQUI RE statement 11.7
inquiry specifier 11.7
INT intrinsic function A. 0
integer (1) editing 12.3.10

| Copyright IBM Corp. 1987, 1990
INDEX - 6

SAA CPI FORTRAN Reference
Index
i nteger constant 3.4
expression 5.1.1
| NTEGER type statenment 6.4
| NTEGER*2 type 3.3
| NTEGER*4 type 3.4
internal file 11.2.3
internal file identifier 11.4
intrinsic functions A0
name in INTRINSIC statenent 6.8
I NTRINSI C statenent 6.8
IOR intrinsic function A. 0
I SHFT intrinsic function A .0
iteration count 9.7.3
in inplied-DO list of a DATA statenent 7.0
ininplied-DO list of a READ, WRITE, or PRINT statenment 11.4.4
L
L (logical) editing 12.3.11
| abel, statement 2.5
.LE. operator 5.3.1
LEN intrinsic function A. 0
| ength
See al so data type
inherited
by a dumry argunent 10.8.2
by a nanmed constant 6.6
specification in FUNCTION statenment 10.3.3
specification in type statement 6.4
letter 2.1
LGE intrinsic function A .0
LGT intrinsic function A .0
line 2.3
list
i nput/output 11.4
list-directed formatting 12.4 to 12.4.2
list-directed input/output statement 11.4.1
LLE intrinsic function A. 0O
LLT intrinsic function A. 0O
| ocal scope 2.2.1
LOG intrinsic function A .0
LOG10 intrinsic function A0
| ogical (L) editing 12.3.11
| ogi cal assignnent statenment 8.2
| ogi cal constant 3.10
expression 5.4.2
| ogi cal expression 5.4
logical IF statement 9.5
| ogi cal operators 5.4
LOG CAL type statenent 6.4
LOG CAL*1 type 3.9
LOG CAL*4 type 3.10
| oop control processing 9.7.4
| ower di mension bound 4.2.1
| ower case-uppercase |letter equivalence 2.1
.LT. operator 5.3.1
M
mai n program 10. 2
MAX intrinsic function A. 0
M N intrinsic function A. 0
MOD intrinsic function A. 0
N

| Copyright IBM Corp. 1987, 1990
INDEX - 7

SAA CPI FORTRAN Reference
Index
name 2.2
array 4.2.1
array element 4.2.5
common bl ock 6.3
determ ning type of 3.2
entry 10.6
file 11.2.1
generic function A. 0
of a constant 6.6
restriction in specification statements 6.0
scope of 2.2.1
specific function A0
substring 4.3
variable 4.1
named conmmon bl ock 6.3
NaN (not a nunber)
arithnetic IF restriction 9.4
arithmetic relational expression restriction 5.3.1
as a REAL*4 value 3.5
as a REAL*8 value 3.6
how indicated with numeric output editing 12.3
.NE. operator 5.3.1
. NEQV. operator 5.4
next record 11.2.1
NINT intrinsic function A O
nonexecut abl e statements, list of 2.4
nonrepeatable (control) edit descriptors, list of 12.1.1
normal execution sequence 2.7
normal i zed val ues, range of
for REAL*4 type 3.5
for REAL*8 type 3.6
.NOT. operator 5.4
NOT intrinsic function A. 0O
null (BN) editing, blank 12.3.5
nunmeric edit descriptors 12.3
e}
OPEN statement 11.5
operators
arithmetic 5.1
character 5.2
logical 5.4
precedence anmobng each other 5.4.3
relational 5.3.1
options, conpiler and execution B.0O
.OR. operator 5.4

order of statenents and comment lines 2.6
ordering, array elenent 4.2.6

output, list-directed 12.4.2

P

P (scale factor) editing 12.3.12
PARAMETER st atement 6.6
restriction on order 2.6
PAUSE st atement 9.10
position, file 11.2.1
after BACKSPACE, ENDFILE, or REW ND statement 11.8
before and after data transfer 11.4.3
positional (T, TL, TR, and X) editing 12.3.14
positioning statements, file 11.8
precedence
of all operators 5.4.3

| Copyright IBM Corp. 1987, 1990
INDEX - 8

SAA CPI FORTRAN Reference
Index
of arithmetic operators 5.1
of | ogical operators 5.4
preceding record 11.2.1
preci sion
of REAL*4 val ues 3.5
of REAL*8 val ues 3.6
preconnection, file/unit 11.3.1
primary
arithmetic 5.1
character 5.2
| ogical 5.4
PRI NT statement 11.4
procedure 10.1
dummy 10. 8.5
external 10.1
procedure reference 10.1
procedure subprogram 10.1
PROGRAM st at ement 10. 2
programunit 10.1
program executable 10.1
R
range
of a DOloop 9.7.1
READ statenent 11.4
real constant 3.5.1
real editing
E (with exponent) 12.3.6
F (wi thout exponent) 12.3.7
G (general) 12.3.8
REAL intrinsic function A0
REAL type statenent 6.4
REAL*4 type 3.5
REAL*8 type 3.6
record 11.1
record number 11.2.2
in NEXTREC specifier of INQUI RE statement 11.7
inrecord specifier 11.4
record specifier 11.4
recursion not permtted 10.1
reference
function 10.3.1
vari able, array elenment, or character substring 4.5
rel ati ona
expression 5.3
operators 5.3.1
repeat specification 12.1.1 12.2
repeatabl e (data) edit descriptors, list of 12.1.1
RETURN st atenent 10.7
return, alternate
point 10.7
specifier 10.8
REW ND statement 11.8
S
S (sign control) editing 12.3.13
SAVE statenment 6.9
scal e factor 12.3.12
scope of a name 2.2.1
separator, value 12.4
sequence, collating 2.1
sequence, normal execution 2.7

| Copyright IBM Corp. 1987, 1990
INDEX - 9

SAA CPI FORTRAN Reference
Index

sequence, storage
array 4.2.6
common bl ock 6.3.2
sequential access 11.2.2
sequential access input/output statement 11.4.1
sharing storage
usi ng common bl ocks 6.3
usi ng equi val ence 6.2
sign control (S, SP, and SS) editing 12.3.13
SIGN intrinsic function A0
SINintrinsic function A. 0O
SINH intrinsic function A0
si ze
of a conmon bl ock 6.3.3
of a dinmension 4.2.3
of an array 4.2.4
slash (/) editing 12.3.1
SP (sign control) editing 12.3.13
speci al character 2.1
specific name of intrinsic function A.0
specification statements, list of 2.4
specification, format 12.1.1
character 12.1.3
specification, length 6.4
specification, repeat 12.1.1
SORT intrinsic function A0
SS (sign control) editing 12.3.13
st at ement
categories 2.4
i nput/out put categories 11.4.1
order 2.6
rules 2.4
statement function 10. 3.2
statement function dummy argument 10.3.2
statement |abel 2.5
statenment | abel assignment (ASSIGN) statement 8.3
STOP statement 9.9
st orage sequence
array 4.2.6
comon bl ock 6.3.2
storage sharing
usi ng common bl ocks 6.3
usi ng equi val ence 6.2
subpr ogram
bl ock data 10.9
function 10.3.3
procedure 10.1
subroutine 10.4
subroutine 10. 4
SUBROUTI NE st atenent 10.4
subroutine subprogram 10. 4
subscri pt
expression 4.2.5
value 4.2.5
substring, character 4.3
synbol i ¢ nanme
See nane
T
T (positional) editing 12.3.14
TAN intrinsic function A. 0

| Copyright IBM Corp. 1987, 1990
INDEX - 10

SAA CPI FORTRAN Reference
Index

TANH intrinsic function A0
termnal point of a file 11.2.1
termnal statement of a DO loop 9.7
TL (positional) editing 12.3.14
TR (positional) editing 12.3.14
transfer of control 2.7

into the range of a DO loop 9.7.1
type conversion rules, data 5.1.2
type statenents 6.4
type, data 3.0 to 3.11
U
uncondi tional GO TO statement 9.1
undefined status 4.4
unformatted input/output statenment 11.4.1
unformatted record 11.1.2
unit 11.3

identifier, external 11.4

inquiring about 11.7

specifier 11.4
upper di nension bound 4.2.1
uppercase-|l owercase |letter equivalence 2.1
\Y
val ue separator 12.4
variable 4.1
w
width, field 12.3
WRI TE statenent 11.4
X
X (positional) editing 12.3.14
z
Z (hexadeciml) editing 12.3.15
zero (BzZ) editing, blank 12.3.5

| Copyright IBM Corp. 1987, 1990
INDEX - 11

